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Model: overdetermined linear system

A · x∗ = b

m

n

· =

A is a tall m × n matrix (m� n) assumed to have full column
rank. Notations: Ai - rows of A,

σ2min = eigmin(ATA) = 1/‖A−1‖2L2→L2



Randomized Kaczmarz method

Starting at some x0 ∈ Rn:

1. Choose i = i(k) ∈ [m] with
probability ‖Ai‖22/‖A‖2F

2. Define xk := xk−1 +
bi−AT

i xk−1

||Ai ||2
Ai

3. Repeat until ‖Axk − b‖2 < ε (some
threshold)
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Convegence theorem (Strohmer - Vershynin 2009)

The randomized Kaczmarz converges to x∗ linearly in expectation:

E||xk − x∗||22 ≤
(

1− 1

κ̃(A)

)k

||x0 − x∗||22.

where κ̃(A) =
‖A‖2F

σ2
min(A)

is a condition number of A.



Relaxation (Motzkin’s) method
Starting at some x0 ∈ Rn:

1. Choose
i := argmaxj∈[m](Ajxk − bj)

2

2. Define xk := xk−1 +
bi−AT

i xk−1

||Ai ||2
Ai

3. Repeat until ‖Axk − b‖2 < ε
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Theorem (Haddock - Needell 2018)

The randomized Kaczmarz converges to x∗ linearly in expectation:

||xk − x∗||22 ≤
k−1∏
i=0

(
1−

σ2min(A)

4γi (A)

)
||x0 − x∗||22,

where γi (A) = ‖Axi − Ax∗‖22/‖Axi − Ax∗‖2∞ is a dynamic range of
the i-th residual.



Randomized Kaczmarz method:

• could get stuck in “similar” equations

• iterations are fast

• provable (convergence in expectation)

Motzkin method:

• iterations make good progress

• slower iterations (search of the best equation is slow...)

• dynamic range is theoretically estimated only in some special
cases

E.g., for A with independent standard normal entries

γk ∼ ‖A‖2Fn/ log(m − k),

which shows accelerated convergence when log(m − k) > n.



Sketch-and-project framework

Gower - Richtárik (2015):
instead of Ax = b, solve STAx = STb
S = m × s sketch matrix, assume s � m
idea: to solve an easier s × n system instead of the original

Iteration:

• Pick random S from some distribution

• xk := xk−1 + (STA)†(STb − STAxk)

Note! Taking S = ek (randomly at each iteration) makes
STA = Ak (k-th row) and recovers randomized Kaczmarz method.



Sketching for Motzkin

Idea: instead of
i := arg max

j∈[m]
(Ajxk − bj)

2

search over some smaller subset of indices.



Sketching for Motzkin

For example, for some subset J ⊂ [m],

i := arg max
j∈J

(Ajxk − bj)
2 = arg max

j∈J
((AJ)jxk − (bJ)j)

2

s Aτ

= 0 Id 0 0

s

·

A

Block sketching is sketching A with
S = randomly placed identity completed by zeroes.

Also known as SKM method.



(SKM) Sampling Kaczmarz Motzkin Method

Starting at some x0 ∈ Rn:

1. Choose τk ⊂ [m] to be a sample of size β constraints chosen
uniformly at random among the rows of A.

2. From the β rows, choose i := arg max
j

(Ajxk − bj)
2

3. Define xk := xk−1 +
bi−Aixk−1

||Ai ||2
Ai

4. Repeat until convergence

DeLoera, Haddock, Needell (2019)
“A Sampling Kaczmarz-Motzkin Algorithm for Linear Feasibility”
SIAM Journal on Scientific Computing, vol. 39, 5, 66–87, 2017.



(GSM) Gaussian sketched Motzkin

Starting at some x0 ∈ Rn:

1. Sketch the system: AS := STA and bS := STb, where S is an
m × s standard normal matrix.

2. Choose i := argmaxj∈[s]((AS)jxk − (bS)j)
2

3. Define xk := xk−1 +
(bS )i−(AS )ixk−1

||(AS )i ||2
(AS)i

4. Repeat until convergence

s
n

STA = sij ∼ N(0, 1)

m

·

A



(sGSM) Sparse Gaussian Sketched Motzkin

Starting at some x0 ∈ Rn:

1. Sketch the system: AS := STA and bS := STb, where S has
an s × s. gaussian block.

2. Choose i := argmaxj∈[s]((AS)jxk − (bS)j)
2

3. Define xk := xk−1 +
(bS )i−(AS )ixk−1

||(AS )i ||2
(AS)i

4. Repeat until convergence

s
n

STA = 0

N(0, 1)

0 0

s

·

A



Theoretical bounds

Theorem (Rebrova Needell 2019)

The GSM converges to x∗ linearly in expectation:

E||xk − x∗||22 ≤
(

1− c
log(s)

κ̃(A)

)k

||x0 − x∗||22.

The sGSM converges to x∗ linearly in expectation:

E‖xk − x∗‖22 ≤
(

1− c
log s

κ̃(A′)

)k

‖x0 − x∗‖22.

Here, c > 0 is an absolute constant, κ̃(A) =
‖A‖2F

σ2
min(A)

is the standard

rate, and A′ is the worst conditioned s × n row submatrix of A,
namely,

κ̃(A′) = argminAτ
κ̃(Aτ ).



Well-conditioned sub-blocks

Every standardized matrix admits a good row paving:

Theorem

Let A be a m× n matrix. For any δ ∈ (0, 1), there exists a partition
on at most ‖A‖2 logmδ−2. blocks, such that for every block Aτ

1− δ ≤ σmin(Aτ ) ≤ σmax(Aτ ) ≤ 1 + δ.

Moreover,

• Good paving could be constructed in poly-time

• For incoherent matrices a random row partition is likely a
good paving

(Tropp, Popa, Bourgain, Tzafriri, Vershynin)



Bits of proof

• An analogue of the dynamic range

E
‖bS − ASxk‖2∞
‖(AS)i‖22

≥ (E‖bS − ASxk‖∞)2

E(‖(AS)i‖22)

by Jensen’s inequality: the function (x , y) 7→ x2/y is convex
on the positive orthant

• Numerator:

ES‖STA(x∗ − xk)‖∞ = Emax
i∈[s]
〈Si , v〉 ≥ c‖v‖2

√
log s

estimate for the max of independent N(0, 1) random variables

• Denominator:

E‖(STA)i‖22 = ‖A‖2F (direct computation)



Experiments on artificial datasets

A = 5000× 100 i.i.d. matrix:
N(0, 1) model and Unif [0.8, 1] model



Experiments on artificial datasets-2

A = 5000× 100 i.i.d. matrix:
Unif [0.8, 1] model



Experiments on real world datasets

Left: GAS dataset (1000× 128)
Right: COVTYPE dataset (5000× 54)



GSM method: dependence on sketch size

A = 5000× 500 i.i.d. matrix:
Left: N(0, 1) model

Right: Unif [0.8, 1] model



SparseGSM method: dependence on sketch size

A = 5000× 500 i.i.d. matrix:
Unif [0.8, 1] model

Time until 1e-1 error, averaged over 10 iterations



SparseGSM method: dependence on sketch size

A = 5000× 100 i.i.d. matrix:
Unif [0.8, 1] model

Time until 1e-2/1e-4 error, averaged over 20 iterations



Conclusions

• We consider 3 ways to sketch Motzkin’s iterative method:
SKM, GSM and sparseGSM

• We provide theoretical guarantees for the accelerated
convergence of GSM (and sparseGSM for a well-conditioned
matrix)

• We demonstrate experimentally some cases when sketched
methods work better than both Kaczmarz and Motzkin (and
when gaussian sketches outperform SKM)

• We investigate experimentally optimal block size for the
sparseGSM method



Thanks for your attention!
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Thanks for the pictures: Jamie Haddock, Deanna Needell, Matlab 2018b


