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Model: overdetermined linear system
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A'is a tall m x n matrix (m > n) assumed to have full column
rank. Notations: A; - rows of A,

o2, = eigmin(ATA) = 1/||A_1H2L24L2

min



Randomized Kaczmarz method

Starting at some xp € R™:
1. Choose i = i(k) € [m] with
probability ||A;[3/[A|2

. i—AT X,
2. Define x; 1= xx_1 + %A;
3. Repeat until ||Axx — b||2 < & (some

threshold)

Convegence theorem (Strohmer - Vershynin 2009)

The randomized Kaczmarz converges to x. linearly in expectation:

k
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A2 . ..
|2| QZ) is a condition number of A.
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Relaxation (Motzkin's) method

Starting at some xp € R":

1. Choose
i= argmaxje[m](Aij _ bj)z
_ AT
2. Define xx := xx_1 + %Ai

3. Repeat until ||Axx — b|2 < €

Theorem (Haddock - Needell 2018)

The randomized Kaczmarz converges to x. linearly in expectation:
k—1 2
2 v min(A)> 2
Xk — X < 1— M2 ) lixp — X
e — [[0( i ) lo = 1B

where v;(A) = ||Ax; — Ax.||3/||Ax; — Ax.||%, is a dynamic range of
the i-th residual.



Randomized Kaczmarz method:
® could get stuck in “similar’ equations
® jterations are fast
® provable (convergence in expectation)
Motzkin method:
® iterations make good progress
® slower iterations (search of the best equation is slow...)

® dynamic range is theoretically estimated only in some special
cases

E.g., for A with independent standard normal entries
v ~ [|A|En/ log(m — k),

which shows accelerated convergence when log(m — k) > n.



Sketch-and-project framework

Gower - Richtarik (2015):
instead of Ax = b, solve STAx = STh
S = m X s sketch matrix, assume s < m
idea: to solve an easier s X n system instead of the original

Iteration:
® Pick random S from some distribution
® X =x,_1+(STA)N(STh— ST Axy)

Note! Taking S = e, (randomly at each iteration) makes
STA = Ay (k-th row) and recovers randomized Kaczmarz method.



Sketching for Motzkin

Idea: instead of

i = arg max(Ajxx — bj)?
Jjelm]

search over some smaller subset of indices.



Sketching for Motzkin

For example, for some subset J C [m],

i := arg max(Ajxx — bj)2 = arg max((Ay)jxk — (bJ)J-)2
Jjed jed

| =] 0i1di 0} 0
S

Block sketching is sketching A with
S = randomly placed identity completed by zeroes.
Also known as SKM method.



(SKM) Sampling Kaczmarz Motzkin Method

Starting at some xp € R™:

1. Choose T4 C [m] to be a sample of size 3 constraints chosen
uniformly at random among the rows of A.

2. From the (3 rows, choose i := arg max(Ajxx — bj)?
J

3. Define xi := xx_1 + %A;

4. Repeat until convergence

Deloera, Haddock, Needell (2019)
“A Sampling Kaczmarz-Motzkin Algorithm for Linear Feasibility”
SIAM Journal on Scientific Computing, vol. 39, 5, 66-87, 2017.



(GSM) Gaussian sketched Motzkin

Starting at some xp € R":

1. Sketch the system: As := ST A and bs := S’ b, where S is an
m X s standard normal matrix.

2. Choose i := argmax;c[s((As);jxk — (bs);)?
3. Define x; := x,_1 + %(As)i
4. Repeat until convergence
s|STA| = | si~N(©1)
n m




(sGSM) Sparse Gaussian Sketched Motzkin

Starting at some xp € R™:
1. Sketch the system: As := ST A and bs :== ST b, where S has
an s X s. gaussian block.
2. Choose i := argmax;c[q ((As);xk — (bs);)?

3. Define xx == xx_1 + %(As)i

4. Repeat until convergence

N(0, 1)

\
s|STA| = oiiioio

n S




Theoretical bounds

Theorem (Rebrova Needell 2019)

The GSM converges to x, linearly in expectation:

log(s) ) “
Bl ~ x5 < (1= 250 Jho — il

The sGSM converges to x, linearly in expectation:

log s k
mm—aﬁs(rw >Hm—&ﬁ

R(A")
. - Al .
Here, ¢ > 0 is an absolute constant, R(A) = 0! . ‘22) is the standard
rate, and A’ is the worst conditioned s X n row submatrix of A,

namely,
7(A") = argming_7(A-).



Well-conditioned sub-blocks

Every standardized matrix admits a good row paving:

Theorem

Let A be a m x n matrix. For any 6 € (0,1), there exists a partition
on at most ||A||? log mé—2. blocks, such that for every block A

1-6< Umin(AT) < O'max(AT) <1+54.

Moreover,
® Good paving could be constructed in poly-time
® For incoherent matrices a random row partition is likely a
good paving
(Tropp, Popa, Bourgain, Tzafriri, Vershynin)



Bits of proof

® An analogue of the dynamic range

Ibs = Asxille - (Ellbs — Asxi]lsc)?

“TIAsz C E((As)IR)

by Jensen’s inequality: the function (x,y) + x?/y is convex
on the positive orthant

e Numerator:
Es)|STA(x — i) lloc = Em?>]<<5;, v) > c|lv]2/log s
1€ls

estimate for the max of independent N(0,1) random variables

® Denominator:

E|(STA)||3 = ||Al|# (direct computation)



Experiments on artificial datasets

A = 5000 x 100 i.i.d. matrix:
N(0,1) model and Unif[0.8,1] model
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Experiments on artificial datasets-2

A = 5000 x 100 i.i.d. matrix:

Relative error

Unif[0.8, 1] model

oz
Time



Experiments on real world datasets

Left: GAS dataset (1000 x 128)
Right: COVTYPE dataset (5000 x 54)
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GSM method: dependence on sketch size

A = 5000 x 500 i.i.d. matrix:
Left: N(0,1) model
Right: Unif[0.8, 1] model
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SparseGSM method: dependence on sketch size

A = 5000 x 500 i.i.d. matrix:
Unif[0.8, 1] model
Time until 1e-1 error, averaged over 10 iterations
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SparseGSM method: dependence on sketch size

A = 5000 x 100 i.i.d. matrix:
Unif[0.8, 1] model
Time until 1e-2/1e-4 error, averaged over 20 iterations

14r
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Conclusions

® We consider 3 ways to sketch Motzkin's iterative method:
SKM, GSM and sparseGSM

® We provide theoretical guarantees for the accelerated
convergence of GSM (and sparseGSM for a well-conditioned
matrix)

® \We demonstrate experimentally some cases when sketched
methods work better than both Kaczmarz and Motzkin (and
when gaussian sketches outperform SKM)

® We investigate experimentally optimal block size for the
sparseGSM method



Thanks for your attention!

Thanks for the pictures: Jamie Haddock, Deanna Needell, Matlab 2018b



