
Notes on Centrality

Shambhavi Suryanarayanan, Elizaveta Rebrova

Spring 2024

Centrality measures provide a way to quantify the how important a node or an edge is in a graph. There
are different ways of quantifying this ”importance” giving rise to different notions of ”centrality”. The goal
of this note is to review the different centralities used in the study of networks.

1 Connections-based centrality measures

1.1 Degree and eigenvector centralities

Definition 1.1 (Degree Centrality). The degree centrality of a vertex v in a undirected graph G = (V,E)
is given by the degree of that vertex.

This is a simple measure of how ”important” a vertex is based on the number of connections (adjacent
vertices, neighbours) it has. However, this is a local measure. Here, all neighbours are considered to be
equal. We can further refine this idea by taking into account the importance of the neighbours too. One
such way this is done is by using the eigenvector centrality.

Definition 1.2 (Eigenvector Centrality). Consider an undirected connected graph G = (V,E) with an
adjacency matrix given by A. Let it’s leading eigenvalue be λmax and the leading eigenvalue be x. That is,

Ax = λmaxx.

Then, the eigenvector centrality of a vertex v is given by x(v). The Perron-Frobenius theorem (stated in
class) guarantees that this value is unique and positive.

Nodes with high eigenvector centrality are ones which have a vary large degree and/or are connected to
important vertices.

Extending this notion to directed graphs has to be performed carefully. Here,as the adjacency matrix
may no longer be symmetric, we first need to fix whether the in-degree or out-degree is of interest. Motivated
by real life networks such as the World Wide Web and the citation networks, it is clear that we should be
looking at the in-degree in such graphs. So we are interested in the left eigenvectors of A, or equivalently,
the right eigenvectors of A⊺.

However, we are faced with another roadblock as the Perron-Frobenius theorem will not hold unless A⊺ is
strongly connected. This means, that for some class of directed graphs, the eigenvector centrality of a node
can be zero despite having a positive in-degree. In fact, the eigenvector centrality of any node in a directed
acyclic graph is 0. This problem is addressed by the following defintions of eigenvector based centralities.

1.2 Katz Centrality

Definition 1.3 (Katz Centrality). Consider a directed graph G = (V,E) with adjacency matrix A. Further,
let α and β > 0 be two parameters. Then the Katz centrality of nodes is given by the vector x which is the
solution the following equation -

xi =
∑
j

Ajixj + β ∀i ⇐⇒ x = αA⊺x+ β · 1

When α is chosen such that (I − αA⊺) is invertible, then

x = β(I − αA⊺)−1
1

1



One drawback faced in using Katz centrality is that if an edge with high Katz centrality points to many
edges, all of them inherit a centrality values. However, in many contexts, it would help to devalue the
centrality of a vertex if it is one of the many ones pointed to by a high Katz-centrality vertex. This is what
PageRank, the algorithm used by google to sort search results hopes to achieve. This is done weighting the
adjacency matrix’s entries with the out degree appropriately.

1.3 PageRank Centrality

Definition 1.4 (PageRank Centrality). Consider a directed graph G = (V,E) with adjacency matrix A.
Further, let α and β > 0 be two parameters. Then the PageRank centrality of nodes is given by the vector
x which is the solution the following equation -

xi =
∑
j

Aji

out-deg(j)
xj + β ∀i ⇐⇒ x = αA⊺D−1x+ β · 1

where D is the augmented out-degree matrix. That is, it is a diagonal matrix with the diagonals coinciding
with the out-degree for vertices with outgoing edges . And for vertices v with no edges going out, dvv = 1.
When α is chosen such that (I − αA⊺D−1) is invertible, then

x = β(I − αA⊺D−1)−1
1

Remark 1. Here, setting dvv = 1 when out-degree(v) is 0 doesn’t affect our analysis of the network as when
this is the case Avi = 0 for all i ∈ V .

1.4 Hubs and Authorities (HITS centrality)

In directed networks, a vertex can be seen as performing two kinds of duties -

• One, as an authority, a node which is pointed to by nodes with high centrality

• And, as a hub, a node that points you towards the ”important” nodes, the authorities

If we were to look at the citation network, the seminal papers would be the authorities while important
surveys which point to it would be hubs. A good hub points to more authorities, and pointing to an authority
should increase the hub-score. From this it is clear that both these score influence each other.

2

3

4

1

5

6

7

Figure 1: Toy network

Before defining, the hub and authority centralities, let’s look at a toy case as in Figure 1.4. Let the
authority scores be given by x and hub scores by y. Let α and β be positive constants. Let’s say we know
the hub-scores y. Then the authority score of vertex 1 is given by α times the sum of the hub score of edges
pointing to it

x1 = α(y2 + y3 + y4) =⇒ x1 = α
∑
j∈V

Ajiyj .

Here, let’s say we know the authority scores x. Then the hub score of vertex 1 is given by β times the
sum of the authority score of edges it points to

y1 = β(x5 + x6 + x7) =⇒ y1 = α
∑
j∈v

Aijxj .

2



Generalising to all vertices, we get that the hubs and authority score vectors are given by solutions to
the equations -

x = αA⊺y, (1)

y = βAx (2)

Plugging one into the other, we get that x and y should satisfy -

x = (αβ) ATA x & y = (αβ) AA⊺ y.

As noted in class, A⊺A and AA⊺ are both symmetric and share the same spectrum. So we can choose αβ
such that (αβ)−1 is the largest eigenvalue of one of the matrices. Then, the hubs and authorities centralities
can be more formally defined in terms of the leading eigenvectors as follows -

Definition 1.5 (Hubs and Authorities Centrality a.k.a. HITS). Consider a directed graph G = (V,E) with
an adjacency matrix A. The authority centrality x and the hub centrality y is given by the leading/principal
eigenvectors to the matrices A⊺A and AA⊺ respectively. That is,

A⊺Ax = λ1x, (3)

AA⊺y = λ1y. (4)

where λ1 is the leading eigenvalue of ATA and AA⊺

Remark 2. Both HITS scores and PageRank values can be computed using power iteration methods and
will be discussed later in class

2 Location-based centrality measures

2.1 Closeness and harmonic centralities

Another way to quantify an importance of a node is to based on how close other nodes are to it. This is
metric of closeness is important in many real-world networks like road networks and social media networks.
In the former, a vertex which is close to many other nodes will prove pivotal for transit. Similarly, in a social
network, such nodes with high closeness determine how information spreads through the network. Formally,
we can define the closeness centrality of a node as inverse of the average distance to other vertices.

Definition 2.1 (Closeness Centrality). Consider a connected graph G = (V,E) on N vertices. For any pair
of vertices u, v ∈ V , let dist(u, v) denote the shortest path between u and v. The closeness centrality, c(v)
of any node v ∈ V is given by

c(v) :=
N − 1∑

u∈V \{v} dist(u, v)

Example. Let’s look at how the closeness centrality of the node b. In the graph below can be computed.
The shortest path to other vertices are recorded in the table below.

v dist(g, v)
d 1
c 1
a 1
e 2
f 3
g 3

This gives us that closeness centrality of b here is 1
average distance to other vertices = 6

11

When working with graphs which aren’t connected, the distance between two vertices u, v in different
connected components would be dist(u, v) = ∞. To accommodate such cases, another similar notion of
centrality called the harmonic centrality can be defined. This is given by -

3



d

c

b a e

f

g

Figure 2: Closeness centrality of node b

Definition 2.2 (Harmonic Centrality). Consider a graphG = (V,E) onN vertices. The harmonic centrality,
c(v) of any node v ∈ V is given by

c(v) :=
1

N − 1

∑
u∈V \{v}

1

dist(u, v)

2.2 Betweenness Centrality

Betweenness centrality is a widely used measure that captures an importance of a vertex/edge in a network
in allowing information to pass from one part of the network to the other. It is defined based on the amount
of shortest paths within the network that has to pass through the given vertex. Informally, network “bot-
tlenecks” (including bridges and local bridges) have higher betweenness values. The picture below is due to
Can Güney Aksakalli.

Definition 2.3 (Betweenness Centrality for nodes). Consider a graph G = (V,E). For s, t, v ∈ V let σs,t

denote the number of shortest paths from s to t and σs,t(v) denote the number of shortest paths from s to
t that pass through v. Then, the betweenness of node v, denoted by h(v) is given by:

h(v) :=
1

2

∑
s,t∈V s,t̸=v

σs,t(v)

σs,t
.

• For the betweenness of a node v, we do not consider paths that originate or end at v.

• The factor of 1
2 appears because we if we are considering a path p from s to t, we would be accounting

for it twice, once in σs,t and again in σt,s. Instead, one can as well only consider unordered pairs (s, t)
from V . Overall, in this definition, each pair of vertices s and t (so that both s and t are distinct from
v) should be considered once.

• The definition above is consistent with the examples we calculated in class, see also the example below.

However, in literature, it is typical to normalize the definition of betweenness in other ways accounting
for the total size of the network (note that the values of h(v) tend to be larger not only in reflection
of the comparatively important role of a vertex, but also in reflection of the total network size). Two
alternative popular ways to rescale the betweenness value are

4



1. to define h1(v) by dividing h(v) through by the number of pairs of nodes inn the network not
including v (so, by (n−1)(n−2)/2 for undirected networks wih n vertices). This way, h1(v) ∈ [0, 1]
for all v. But the values of h1(v) can be very small in large sparse netwoks (and real-life networks
tend to be very sparse!)

2. to normalize based on the maximal and minimal values of h(v), that is

h2(v) :=
h(v)−minv h(v)

maxv h(v)−minv h(v)

Check that in this case we also ensure that h2(v) ∈ [0, 1] for any v and we do not shrink the range
of values of the betweenness function as much as in the defnition of h1(v).

Finally, note that rescalings do not matter if you only need to compare the betweennesses of different
vertices within one network. For the exams, you only need to know the Definition 1.1 of h(v), not
other possible ways to rescale it.

• The function for computing betweenness in the NetworkX package in python uses a slightly differ-
ent definition of betweenness than what we consider. Pre-defined functions for computing centrality
measures cannot be used in the exams.

We can define betweenness centralities for edges of a graph in a similar fashion.

Definition 2.4 (Betweeness centralities for edges). The betweenness centrality measure for the edge e =
(u, v) can be defined as

he(u− v) :=
1

2

∑
s,t∈V

σs,t(e)

σs,t

with the same agreement on normalization (each shortest path in the graph is computed once).

Remark 3. Note, that the endpoints of an edge e are included in the summation. If we consider an edge

e = (u, v), then
σu,v(e)
σu,v

=
σv,u(e)
σv,u

= 1. This implies that the edge betweenness is strictly positive (in fact, it

is at least 1) for every edge while the node betweenness can be zero for some nodes.

3 Example: Calculating Betweenness centralities

Calculating node betweeness:

d

c

b a e

f

g

A B

Let’s consider the betweenness of the node a. Let the nodes on the left of a, be denoted by A and those
on the right by B. For any pairs of nodes s, t in A, none of the shortest paths would pass through a. Hence,
σs,t(a) = 0. This similarly holds for pairs of node in B.

Now consider a node s ∈ A and t ∈ B. All of the shortest paths from s, t would have to pass through v.
As removing a would make A and B disconnected. We can also note that here, all the shortest paths will
be unique. Thus σs,t(a) = σs,t. Similar argument holds for s ∈ B and t ∈ A.

5



d

0

c

0

b

8

a

9

e

8

f

0

g

0

Figure 3: Node betweenness values for all vertices in the graph

Hence,

h(a) =
1

2
(

∑
s∈A,t∈B

σs,t(a)

σs,t
+

∑
s∈B,t∈A

σs,t(a)

σs,t
) =

1

2
(

∑
s∈B,t∈A

1 +
∑

s∈A,t∈B

1) = 3× 3 = 9

Similarly, we can compute node betwennesses for all vertices of the graph:
Calculating Edge Betweeness: Now, let’s look at how we can compute edge betweenness values for

the same graph. Let’s first focus on the a-b edge, which we shall denote by e! Similar to what was done in
the vertex case, we can partition to the vertices into two classes A and B, based on whether they are to the
left or right of the edge respectively. Recall the formula for calculating edge betweeness:

d

c

b a e

f

g

A B

he(e = a− b) =
1

2

∑
s,t∈V

σs,t(e)

σs,t
=

1

2
(

∑
s∈A,t∈B

σs,t(e)

σs,t
+

∑
s∈B,t∈A

σs,t(e)

σs,t
)

=
∑

s∈A,t∈B

σs,t(e)

σs,t

=
∑

s∈{b,c,d},t∈{a,e,f,g}

σs,t(e)

σs,t

=
(1)

∑
s∈A,t∈B

1 = 3 · 4 = 12

Here, Eqn (1) follows as the shortest path from any vertex in A to any vertex in B includes the edge

a− b. That is,
σs,t(e)
σs,t

= 1 for all s ∈ A, t ∈ B.

6



d

c

b a e

f

g

1

5

5

12 12 1

5

5

Figure 4: Edge betweenness values for all edges in the graph

In a similar fashion, we can compute the edge betweenness values for all the edges in this graph. These
are given by -

Note that this is only a minimal example to illustrate the normalization factor that we use. For less
trivial examples see lecture notes and the textbook.

3.1 Calculating betweenness centrality for all edges at once

For small networks, it is enough to use Definition 1.1 to compute betweenness centrality. If you deal with
a large network, one needs to find all shortest paths between all vertices, and this can be too slow. A
modification of the BFS (breadth first search) algorithm can address this issue. A version of this algorithm
that is used for computing edge betweenness is presented here (also in the textbook in Section 3.6).

This algorithm is based on an equivalent representation of this problem is through the idea of flows. In
this formulation, you assume that there is one unit of flow between each par of vertices in the graph. This
one unit of flow is equally divided amongst all it’s shortest paths. So, the total flow on each edge would
correspond to the edge betweenness of the corresponding edge.

The following algorithm is described on the pages 80-81 of the Easley&Kleinberg textbook:

1. Starting from every vertex,

(a) Construct the BFS (breadth first search) tree,

(b) In the tree, compute potentials of all vertices as numbers of (shortest) paths going strictly down
from the root to a given vertex. This is worked out top to bottom, for example, the vertices in
the first layer of the BFS tree have potentials 1.

(c) Then, compute edge flows as the number of units needed to bring 1 unit of flow to each vertex on
the bottom layer of the BFS tree while leaving 1 unit of flow at every vertex along the downward
paths. This is worked out bottom to top, the flow splits between the incoming (from the top)
edges proportionally to the previous vertex potentials. For the horizontal edges, the flow is zero.

2. Add up flows found on Step 1 for every edge (over all BFS trees) to almost get betweenness measure
for each edge.

3. Divide all the numbers by 2 to remove double-counting paths from s to t and from t to s.

We note that the algorithm searches for the betwennesses of all edges at once, which aligns with the
needs of Girvan-Newman algorithm for betweenness-based clustering. However, in order to find the edges
with maximal betweenness (as for Girvan-Newman algorithm), the normalization does not matter and, in
particular, step 3 can be skipped.

Next, we show the same example as above computed via the BFS approach. Starting from a, we can
perform BFS and use this to count paths or potential by going down the layers. This is denoted in the color

7



green in Fig. 3.1 below. Now that we have the number of paths, starting at the bottom most layer, we work
our way up to compute edge flows (denoted in red). If we were to start with the a − d path, the edge flow
for b− d would be one. Similarly, for b− c, e− f and e− g edge.

Now, moving on to the second layer, if we were to look at a − b edge, it would have a flow of 3, where
one is from the path a − b itself, and 2 from the sum of edge flows from the bottom layers. We can repeat
this to compute the edge flows, for all edges in this BFS representation. Here, the edge flow value of an edge
e in the BFS from a is nothing but the following quantity∑

t∈V \{a}

σat(e)

σat

Figure 5: Edge flow values corresponding to BFS done starting from node a

To compute the betweenness centrality, we would need -

he(e) =
1

2

∑
a∈V

∑
t∈V \{a}

σat(e)

σat

To accomplish this, write down the BFS trees from all the vertices and compute the corresponding edge
flows as depicted in Figures 3.1and 3.1. Then, the edge flow values are summed up and divided by 2 to get
the betweenness centrality of each edge. For this example, this would be as given below. Note that they
match with our previous computations.

8



Figure 6: Edge flow values corresponding to BFS done starting from node b and e

Figure 7: Edge flow values corresponding to BFS done starting from node c,d,f and g

Figure 8: Betweenness centrality values obtained by summing up edge flows and dividing by 2

9


	Connections-based centrality measures
	Degree and eigenvector centralities
	Katz Centrality
	PageRank Centrality
	Hubs and Authorities (HITS centrality)

	Location-based centrality measures
	Closeness and harmonic centralities
	Betweenness Centrality

	Example: Calculating Betweenness centralities
	Calculating betweenness centrality for all edges at once


