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What do I do?

• Study the structure of large high-dimensional objects in the
presence of randomness

• Use this understanding to develop (randomized) methods that
work with complex data efficiently
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Large high-dimensional objects:

• Sets

• Matrices

• Tensors

• Graphs

• Systems of linear equations

• Neural nets

• . . .

Concentration of measure
phenomenon

High-dimensional probability
helps revealing their structure:

x0 x1

x2
x3

x∗
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Solving linear systems

Ax = b, find x ∈ Rn given A ∈ Rm×n,b ∈ Rm.

• Direct methods: x = A†b, LU, Cholesky, . . .

• Methods exploiting the structure of A: H-, HSS solvers, . . .

• Iterative methods: SGD, GMRES, projection based methods,
. . .

• Sketch-and-project (Gower and Richtarik, 2015)

Disclaimer: I will focus on overdetermined full-rank systems m ≥ n
either we assume that solution exists (redundant equations) or not
(then we search for a least square solution)
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Model: overdetermined linear system

A · x∗ = b, m > n

m

n

· =
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Sketch-and-project

instead of Ax = b, solve STAx = STb

S = m × s sketch matrix, if s � m (sketched system is easier)
Iteration:

xk = xk−1 + (STA)†(STb− STAxk)
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Discrete random sketches and Kaczmarz methods

Ai = (0, . . . , 0, 1, 0, . . . , 0) · A

Aτ =
[

0 Id 0
]
· A = STA; bτ = STb

s Aτ

= 0 Id 0 0

s

·

A

Sketch-and-project methods with S = (randomly placed identity
completed by zeroes) are randomized Kaczmarz methods
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Randomized Kaczmarz (RK) method
Assume that for all the rows ‖Ai‖ = 1.

1. initialize x0

2. project current iterate to Ai:
xk+1 = xk − (〈Ai, xk〉 − bi )Ai,
where i ∼ Unif {1, . . . ,m}

x0 x1

x2
x3

x∗

Geometrically, each index i corresponds to a hyperplane in Rn. RK
projects orthogonally onto a randomly chosen hyperplane

Convegence theorem (Strohmer - Vershynin 2009)

For a system Ax∗ = b, RK converges to x∗ linearly in expectation:

E||xk − x∗||22 ≤
(

1−
σ2min(A)

‖A‖2F

)k

||x0 − x∗||22.
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Block Kaczmarz Method
Starting at x0 ∈ Rn:

1. Choose Aτ a block row subset at random,
τ = τ(k) ⊂ [m], |τ | = s

2. Define xk := xk−1 + (Aτ )†(bτ − Aτxk)

s Aτ

Convegence theorem (Needell - Tropp 2012)

The block Kaczmarz converges to x∗ in expectation with
accelerated rate

E||xk − x∗||22 ≤
(

1− c
σ2min(A)

||A||2 logm

)k

||x0 − x∗||22,

if all blocks are well-conditioned: for some δ ∈ (0, 1),
number of blocks ·maxτ‖Aτ‖22 . ‖A‖22 log(m) 1

δ2
· (1 + δ).
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Gaussian sketching

Axi := ξT · A, where ξ ∼ N(0, Id)

AS := ST · A, where S is m × s gaussian random matrix

AS

:= ·N(0, 1) i.i.d.

A

Gaussian sketch-and-project method takes gaussian random
matrices S with i.i.d. entries as sketches.
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BGK convergence rate

Convegence theorem (R. - Needell 2019)

The gaussian block Kaczmarz method converges to x∗ with the
rate

E‖xk − x∗‖22 ≤
(

1−
sσ2min(A)

(9
√
s‖A‖+ C‖A‖F )2

)k

‖x0 − x∗‖22,

where 1 ≤ s ≤ m is the dimension of the gaussian sketch S.

• recovers ”standard rate” σ2min(A)/‖A‖2F for s = 1

• per iteration performance improves with increasing s

• actually, cputime performance also improves with increasing s
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Better convergence for bigger sketch size

For A = 50000× 500 i.i.d. gaussian matrix:

Left: time(s) vs relative error for the varying sketch size s = 1, 10, 100, 500;
right: block size vs average time until relative error 1e − 4
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Proof ideas: random matrices

xk = xk−1 + (STA)†(STb− STAxk)

= (Id− (STA)†STA)xk + (STA)†STb.

1. We need to estimate E‖(STA)† · STAx‖22 from below - a
product of two (dependent!) random matrices

2. S is m × s standard normal i.i.d. matrix.

E‖STAx‖22 = s‖Ax‖22 ≥ sσ2min(A)

But we need a high probability statement for any s ≥ 1:

P(‖ST v‖22 > ‖v‖2s/10) ≥ 0.5

for any v ∈ Rm and s ≥ 1 - Cramér’s concentration theorem.
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3.
E sup

x∈Sn−1

‖STAx‖2 ≤
√
m‖A‖2

Can we get a better estimate? Yes!

E sup
x∈Sn−1

‖STAx‖2 = E sup
w∈ASn−1

‖STw‖2 ≤
√
s‖A‖+ C‖A‖F .

To show 3.: apply matrix deviation inequality:

E sup
w∈U
‖STw‖2 ≤

√
s sup
w∈U
‖w‖2 + Cγ(U),

to the ellipse U := ASn−1. Here, γ(U) is gaussian complexity of
the set U:

γ(U) := E sup
w∈U
|〈ξ,w〉|, where ξ ∼ N(0, In)
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Sampling sketches from finite collection

We could select sketches from the pre-sampled collection of
gaussian random matrices

Theorem (R. - Needell)

Let S = {S1, . . . ,SN} be a set of m × s random matrices with
i.i.d. standard normal entries, m2.5 ≤ N ≤ em/3. Then, with
probability at least 1− 3/m, for any initial estimate x0, finite block
gaussian Kaczmarz method converges with the rate

E‖xk − x∗‖22 ≤
(

1− s

36mκ2(A)

)k

‖x0 − x∗‖22.

In practice, the collection S can be much smaller, about |S| ∼ m/s
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Solving noisy systems

If the system is inconsistent, we can search for least-squares
problem solution with gaussian block Kaczmarz method:

x∗ = arg min
x
‖Ax− b‖22

and the error (noise) e := Ax∗ − b.

Theorem (R - Needell)

The gaussian block Kaczmarz method converges to x∗ with the
rate:

E‖xk − x∗‖22 ≤ rk‖x0 − x∗‖22 +
‖e‖22

s4min(A)
·
[

(9
√
s‖A‖+ C‖A‖F )2

(
√
n −
√
s)2

]

Structurally differs from the noiseless case: diverges when s ∼ n
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Dependence on the block size in the noisy case

A = 50000× 500 i.i.d. gaussian matrix,
e = random gaussian noise, normalized: ‖e‖2 = 0.05 ∗ ‖b‖2

Left: iteration vs relative error for the sketch size s = 1, 10, 100, 490; right:
block size vs average time until relative error 1e − 2; 70 sec is max allowed time
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Is gaussian sketching practical?

A = 50000× 500 i.i.d. matrix:
N(0, 1) model (thin) and Unif [0.8, 1] model (bold lines)

Left: s = 1, right: s = 223; blue = with gaussian sketching, red = without it

Gaussian sketching improves regular Kaczmarz for highly coherent
systems when s = 1, but loses the advantage on bigger block sizes
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Gaussian sketching reduces variance

A = 50000× 500 i.i.d. matrix,
e = spiky noise, 10 random spikes of size 50.

Iteration vs relative error (median and range over 10 runs). Left: gaussian
model, right: coherent model; blue = with gaussian sketching, red = without it.
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Noise vs corruptions

Noise: Ax = b̃ and
∥∥∥b̃− b

∥∥∥ ≤ e

• E.g., for RK: [Needell ’10], [Needell, Tropp ’12], [R., Needell ’19]
The result contains convergence horizon depending on the size of
noise, ‖e‖ or ‖e‖∞.

Corruptions: b is obtained by large changes on some of the entries of b̃

• Convergence horizon can be huge... Idea: look at the residual
(distances from an iterate to the equation hyperplanes) to detect
suspicious candidates.
[Haddock, Needell ’18] – run RK for several iterations to approach
x∗, then examine the residual and remove the equations with the
largest. This works with few corruptions only (up to 5− 10%).
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Model: overdetermined linear system

A · x∗ = b, m > n

m

n

· =

• bC ∈ Rn has at most βm nonzero entries (β is the fraction of
corrupted entries)

• Given knowledge of A and the corrupted measurements
b̃ := Axx ∗+bC , we would like an algorithm to recover xx ∗ .
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RK on corrupted systems

(a) Gaussian model (b) Coherent model

Relative error as a function of iteration count plotted for a 50000× 100
Gaussian and coherent model with a 0.2 corruption rate. The coherent system
was generated by sampling entries uniformly in [0, 1) and then normalizing the
rows of the resulting matrix.
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QuantileRK algorithm

Idea: If a sampled hyperplane looks corrupted, don’t project!
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QuantileSGD algorithm

Idea: Adjust the step size of the “projection” according to the
quantile.
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L1-SGD

• Another approach is to minimize

x∗ = arg min
x
‖Ax− b‖21.

This is a standard relaxation of the minimization of L0-norm
([Candes, Tao, ’05], [Candes, Rudelson, Tao, Vershynin, ’05])

• Stochastic Gradient Descent with L1 loss has iteration

xk+1 = xk − ηk sign(〈Ai, xk〉 − bi )Ai,

with randomly sampled i ∈ [m] and some step size schedule ηk
• Note that RK can be viewed as SGD with L2 loss and correct

step size:
xk+1 = xk − (〈Ai, xk〉 − bi )Ai ,
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Optimal step size

• An optimal choice for ηk is such that

E(‖ek+1‖22) = E(‖xk+1 − x∗‖22) minimized

• Can be computed analytically:

η∗k =
1

m

m∑
j=1

sign(〈Ai, xk〉 − bi )〈ek , ai 〉

and also

E(‖ek+1‖22) =

(
1−

(
η∗k
‖ek‖

)2
)
‖ek‖2

• The last quantity
(

η∗k
‖ek‖

)2
≥ 1

n for subgaussian matrices

(which gives standard “Kaczmarz” linear convergence rate)

Clearly, ek = xk − x∗ is not known.
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Approximating optimal step size

Two key facts:
• Step sizes of similar order lead to similar convergence:

L1-SGD with the stepsize ηk , satisfying 0 < c1 ≤ ηk
η∗k
≤ c2 < 2 at

each iteration, converges with

E(‖ek+1‖22) ≤
(

1− C

n

)
‖ek‖2

•

Residual quantiles: q-quantile (|〈Ai` , xk〉 − bi` | : ` ∈ [T ]) ≈
Uncorrupted quantiles: q-quantile {|〈Ai` , xk − x∗〉| : ` ∈ [T ]} ≈

Empirical mean :
1

m

m∑
i=1

|〈xk − x∗,Ai 〉| ≈ Optimal step size η∗.



Intro Sketch-and-project and Kaczmarz Iterative methods with corruptions

Convergence Theorem

Theorem (Haddock, Needell, R., Swartworth, 2020)

Let an m × n matrix A have subgaussian isotropic rows, and its
entries have centered and bounded density functions. Then with
probability 1− ce−cqm, QuantileRK(q) and QuantileSGD(q) on
the full residual converge with the standard convergence rate

E||xk − x∗||22 ≤
(

1− Cq
σ2min(A)

‖A‖2F

)k

||x0 − x∗||22

if β is smaller than some positive constant, q ≤ 0.5− β, and n and
m/n are larger than fixed constants.

• The same order as standard RK rate for uncorrupted systems.
• Result essentially holds with subsampling as well.
• The corrupted entries and values may be chosen adversarially.
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Model

Assumption

All the rows Ai of the matrix A have unit norm and are
independent. Additionally, for all i ∈ [m],

√
nAi is mean zero

isotropic and has uniformly bounded subgaussian norm∥∥√nAi

∥∥
ψ2
≤ K .

Assumption

Each entry Aij of A has probability density function φij which
satisfies φij(t) ≤ D

√
n for all t ∈ R. (The quantity D is a constant

which we will use throughout when referring to this assumption.)
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Proof sketch for QuantileRK

1. Concentration of the residual quantiles (|〈Ai, xk〉 − bi | : i ∈ [m]):

For n large enough, with probability at least 1− e−cn, for every x ∈ Rn

for all but β′m indices i the following holds |〈Ai, x〉| ≤ C/(β′
√
n)‖x‖.

2. Condition on choosing a row from the uncorrupted sub-matrix A′.
Known RK rate holds here, since the condition number of A′ is of
the same order as of A by a non-trivial high probability uniform
lower bound for the singular values of submatrices:

Pr

 inf
T⊆[m]:
|T |≥αm

σmin(AT ) & α3/2

24D σmin(A)

 ≥ 1− 3e−c2αm

3. Condition on choosing a corrupted row. This does not hurt too
much by 1., since the step size is bounded by the quantile.



Intro Sketch-and-project and Kaczmarz Iterative methods with corruptions

Proof sketch for QuantileRK

1. Concentration of the residual quantiles (|〈Ai, xk〉 − bi | : i ∈ [m]):

For n large enough, with probability at least 1− e−cn, for every x ∈ Rn

for all but β′m indices i the following holds |〈Ai, x〉| ≤ C/(β′
√
n)‖x‖.

2. Condition on choosing a row from the uncorrupted sub-matrix A′.
Known RK rate holds here, since the condition number of A′ is of
the same order as of A by a non-trivial high probability uniform
lower bound for the singular values of submatrices:

Pr

 inf
T⊆[m]:
|T |≥αm

σmin(AT ) & α3/2

24D σmin(A)

 ≥ 1− 3e−c2αm

3. Condition on choosing a corrupted row. This does not hurt too
much by 1., since the step size is bounded by the quantile.



Intro Sketch-and-project and Kaczmarz Iterative methods with corruptions

Proof sketch for QuantileRK

1. Concentration of the residual quantiles (|〈Ai, xk〉 − bi | : i ∈ [m]):

For n large enough, with probability at least 1− e−cn, for every x ∈ Rn

for all but β′m indices i the following holds |〈Ai, x〉| ≤ C/(β′
√
n)‖x‖.

2. Condition on choosing a row from the uncorrupted sub-matrix A′.
Known RK rate holds here, since the condition number of A′ is of
the same order as of A by a non-trivial high probability uniform
lower bound for the singular values of submatrices:

Pr

 inf
T⊆[m]:
|T |≥αm

σmin(AT ) & α3/2

24D σmin(A)

 ≥ 1− 3e−c2αm

3. Condition on choosing a corrupted row. This does not hurt too
much by 1., since the step size is bounded by the quantile.



Intro Sketch-and-project and Kaczmarz Iterative methods with corruptions

Concentration of the quantiles

Theorem

For n large enough, with probability at least 1− e−cn, for every x ∈ Rn

for all but β′m indices i the following holds |〈Ai, x〉| ≤ C/(β′
√
n)‖x‖.

• Enough to show that with probability 1− 2e−t
2m for every unit x

1

m

m∑
i=1

|〈x,Ai 〉| ≤
1√
n

+ K

(
c1√
m

+
c2t√
n

)

• This follows from uniform concentration of
M(x) := 1

m

∑m
i=1 |〈x,Ai 〉| on the sphere (chaining + Dudley’s

inequality)

• And noticing that (EM(x))2 ≤ E(M(x))2 ∼ 1
n , so there exists x at

least that small.
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Various quantiles

(a) QuantileRK (b) QuantileSGD

log(‖x2000 − x∗‖ / ‖x0 − x∗‖) for (a) QuantileRK and (b) QuantileSGD run on
50000× 100 Gaussian system, with various corruption rates β and quantile
choices.
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Arbitrarily large corruptions

(a) Effect of aspect ratio (b) Effect of corruption size

(a) Log relative error for QuantileSGD and QuantileRK after 1000 iterations on
a 100a× 100 Gaussian system with a 0.2 corruption rate, where a = m/n is the
aspect ratio of the matrix.
(b) Log relative error for QuantileSGD and QuantileRK after 2000 iterations, as
a function of corruption size. We use a 50000× 100 Gaussian system and
corrupt our system by adding a uniform value in [−10x , 10x ].
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Future directions

• More general corruption models: byzantine corruptions,
errors on the left hand side, mix of noise and corruptions

• More general methods: block methods for corrupted
systems (with Ben Jarman, Deanna Needell)

• More general problems: randomized iterative methods for
optimization problems beyond solving linear systems (with
Will Swartworth, Han Lyu, Deanna Needell)
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Literature



Intro Sketch-and-project and Kaczmarz Iterative methods with corruptions

Thanks for your attention!

x0 x1

x2

x3

x∗
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