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Consider a game from Precept 3 with the following payoff matrix for two players A (his
strategies are in the rows) and B (her strategies are in the columns):

LR
U 1,142
D[33]22

To find pure Nash equilibria (NE), we check each of 4 pure strategies:

e Joint strategy (U, L): Player A has an incentive to switch to strategy D to get a payoff
3 instead of 1 - not a NE

e Joint strategy (U, R): Player A has no incentive to switch (he can only change it to
(D, R) and his payoff will be worse, 2 instead of 4), Player B also has no incentive to
switch (she can only change it to (U, L) and her payoff will be worse, 1 instead of 2) -
this is a NE

e Joint strategy (D, L): also a NE (exercise: argue this similarly to the (U, R) case)

e Joint strategy (D, R): Player B has an incentive to switch to strategy L to get a payoff
3 instead of 2 - not a NE

To find mixed Nash equilibria (mixed NE), let us first do it by definnition like we
did in class for the Matching Pennies game. Then, we summarize a shorter approach that
you discussed on the precepts.

Assume that the mixed joint strategy (p,q) was employed (Player A chooses U with
probability p and Player B chooses L with probability ¢).

First, let us take the position of Player A. The payoff for Player A will be

pg-14+p(l—q)-4+q(1—p)-3+(1-p)(l—q)-2=
—4pg+2p+q+2=p(2-4q) +q+ 2. (1)

As Player A, we have control over the choice of p, but ¢ is given for us. So, we reason about
what would be our best response for various q.
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e If 2 —4q < 0 (that is, ¢ > 1/2), then the best p is minimal possible p = 0.
e If 2 —4q > 0 (that is, ¢ < 1/2), then the best p is maximal possible p = 1.
e If ¢ =1/2, any choice for p gives the same payoff.

To see if any of these strategies — (0, ¢) with ¢ > 1/2, OR (1, ¢) with ¢ < 1/2, OR (p, 1/2)
for any p — contain equilibrium points, we need to check if Player B would also want to
adhere to the same strategy from her side.

So, next step is to take the perspective of Player B. Her payoff is

pg-1+pl—¢q)-2+q(1—p)-3+(1—p)(l—gq)-2=
—2pg+q+2=q(-2p + 1) + 2. 2)

As Player B, we only control the choice of ¢, leading to the following reasoning for the
different cases for the given p:

o If 1 —2p > 0 (that is, p < 1/2), then the best ¢ is maximal possible ¢ = 1.
e If 1 —2p < 0 (that is, p > 1/2), then the best ¢ is minimal possible ¢ = 0.
e If p =1/2, any choice for ¢ gives the same payoﬂﬂ.

So, Player B would support a joint strategy as long as it is (p, 1) for p < 1/2, OR (p,0) for
p>1/2, OR (1/2,q) for any q.

We now compare two conditions in blue and see which joint strategies (p, ¢) would satisfy
both of them and get three options: (0,1) and (1,0) corresponding to the two pure Nash
equilibria found above, and additionally a mixed one (1/2,1/2). The problem is solved now.

Remark 1. 1. Note that the second part of the reasoning that starts with the general joint
strategqy (p,q) finds all Nash equilibrium points (pure and mized) and it is enough to solve
the problem completely. The first part can be used to double-check all pure equilibrium points
that were discovered in the general process.

2. In the precept, you were shown a shorter way to find the same mized equilibrium.
It stems from the following observation: the only way a truly mized strategy (p # 0,1 or
q # 0,1) can be the best response of a player if all his/her response strategies are equally
good (give the same payoff for that player). Why? The reason for this is that the payoff
function is linear in p for fizred q (and vice versa, see equations ,), so, if it is not
a constant function then the payoff is mazximized in the endpoint of the segment [0,1]. A
player choosing p will choose p =0 oor 1 then. So, this is the only case when a truly
mized strategy p € (0,1) can be in a Nash equilibrium: if for all choices of p,
the payoff of the respective player (who chooses p) is the same.

!'Note that most values of p result in optimal ¢ being 0 or 1, i.e., a pure strategy is the best response.
And only one option that allows for a mixed best response actually allows for any response. We explore this
observation further in Remark 1.



Now, how can we use the remark to find (only a mixed) Nash equilibrium
quicker? We conclude from the remark that if a (p, ¢) is a mixed equilibrium, then Player
A can play the strategy p equally well as his strategies 0 and 1, that is, the strategies (0, q),
(p,q) and (1,q) all give the same payoff for Player A. We will actually use this fact to
determine q, namely

payoff for A(1,q) = payoft for A(0, q),

(note that we do not even consider the point (p, q) here in computation!)
q-1+(1—-q)-4=q¢-3+(1—q)-2
Solving this for ¢, we get ¢ = 1/2.

We also conclude from the remark that if a (p, ¢) is a mixed equilibrium, then Player B
can play the strategy ¢ equally well as his strategies 0 and 1, that is, the strategies (p,0),
(p,q) and (p, 1) all give the same payoff for Player B. So,

payoff for B(p,0) = payoff for B(p, 1),
and we use this to solve for p

p-1+(1—-p)-3=p-2+(1—-p)-2
and we get p = 1/2.

Remark 2. 1. Any of two ways can be used to find Nash equilibria. Note that the second
way does not give you pure NE, so they need to be found independently like on page 1.

2. The same approach of indifference of payoft at mized equilibria can be employed for the
games with more than wo strategies. See, for example, a Rock-Paper-Scissors game example
in this tutorial Handout on Mixed Strategies by Ben Polak.


https://oyc.yale.edu/sites/default/files/mixed_strategies_handout_0_0.pdf

