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What do I do?

• Study the structure of large high-dimensional objects in the
presence of randomness

• Use this understanding to develop (randomized) methods that
work with complex data efficiently
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Large high-dimensional objects:

• Sets

• Matrices

• Tensors

• Graphs

• Systems of linear equations

• Neural nets

• . . .

Concentration of measure
phenomenon

High-dimensional probability
helps revealing their structure:

x0 x1

x2
x3
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Research overview

1. Matrices: Condition numbers of i.i.d. heavy-tailed random
matrices (UofMichigan)

2. Linear systems:

2.1 Scaling kernel ridge regression with HSS linear solvers
(Lawrence Berkeley National Lab)

2.2 Iterative methods for optimization (UCLA)
• Guarantees for gaussian block sketching for Kaczmarz method
• Corruption avoiding versions of Randomized Kaczmarz and

SGD methods

3. Tensors: (UCLA)
• Modewise (structure preserving) methods for tensor dimension

reduction
• Matrix and tensor low rank decomposition for interpretable

machine learning
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Why tensors?

X ∈ Rn1×n2...×nd − d-mode tensor

Naturally multi-modal data is ubiquitous:

• datasets with many attributes

• datasets with temporal component

• color pictures, videos

So,

• Converting it to a vector (vectorization)
or to a matrix (matricization) destroys the
structure of such data!

• Moreover, tensorized computations are
memory- and time-efficient. For example,
tensorized random projections
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Tensor CP-rank

Dimension reduction often uses low rank property. What is a low
rank tensor?

By analogy with matrices, rank 1 tensor X = x1© . . .© xd is

X (i1, . . . , id) = x1(i1)x2(i2) . . . xd(id).

CP-rank r tensor is a smallest number of rank-one tensors that
generate X as their sum:

X =
r∑

i=1

αix
i
1© . . .© xid

Normalization: we assume ‖xij‖2 = 1. Clearly, r ≤ nd . Note that

low-rank tensor has rnd degrees of freedom instead of nd .
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Tensors are harder than matrices

However, tensor rank issue:
• CP CANDECOMP/PARAFAC (canonical

decomposition/parallel factors) rank is quite natural, but has
important issues:
• It is NP-hard to compute the rank
• Uniqueness question

• There are other rank notions: HOSVD (Tucker
decomposition), TT, hierarchichal versions . . .

Picture is taken from “Tensor Decompositions and Applications paper by Kolda and Bader
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Tensors are more delicate than matrices

Lemma (Classical Johnson-Lindenstrauss lemma)

Take small η > 0. Random projection from Rm′ → Rm ε-preserves
distances between K points with probability 1− η for m ≥ cη lnK

ε2
.

The strength of JL Lemma is that projection matrix can be taken
from a large class of so-called JL-embeddings (including Gaussian,
Fast Fourier, as well as sparse matrices and more)

These random projections are typically constructed as

m ×m′ (random) matrices.

If the data is vectorization of a n1 × n2 × . . .× nd -dimensional
tensor, then m′ =

∏
ni , resulting in a huge m ×

∏
ni projection

matrix.
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Modewise products: tensor ×j matrix

Definition (j-mode product, j = 1, . . . , d)

A tensor X ∈ Rnd can be multiplied by a matrix A ∈ Rm×n to get
a tensor (X ×j A) ∈ Rn×...×m×...×n with the coordinates

(X ×j A)(. . . , ij−1, `, ij+1, . . .) =
n∑

ij=1

A(`, ij)X (. . . , ij , . . .).

• For a 2 way tensor (a matrix)

X ×1 A1 ×2 A2 = A1XAT
2

• For the CP representation, it is equivalent to

X ×1 A1 ×2 A2 . . .×d Ad =
r∑

i=1

αi (A1x
i
1)© . . .©(Adx

i
d)
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Modewise dimension reduction: L(X ) = A(vect(X
d

×
j=1

Aj))

Combined size of dimension reduction matrices is

m ×
d∏

i=1

ni →
d∑

i=1

mini + m′
d∏

i=1

mi total

Here, n1 = 3, n2 = 4, n3 = 5. Then, m1 = 2,m2 = 3,m4 = 4.
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Takeaway

Vectorizing tensor data is
• non-compact
• destroys the data structure
• results in a clumsier object to work with (respective projection

matrix must be huge comparing to any of the initial tensor
dimensions)

We propose simple, efficient and provable modewise
framework for tensor data.
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Tensor dimension reduction
and low-rank tensor fitting problem1

1M. Iwen, D. Needell, E. Rebrova, A. Zare, Lower Memory Oblivious
(Tensor) Subspace Embeddings with Fewer Random Bits: Modewise Methods
for Least Squares, accepted to SIMAX
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Tensor fitting problem

Fitting problem: For an arbitrary tensor Y, find the closest rank r
tensor X :

arg min
X

‖X − Y‖2F .

Recall that

• Rank-r tensor has rnd degrees of freedom instead of nd

• exact CP form is NP hard to find.

This problem includes finding the best set of unit norm vectors
{xij} (basis) and the best set of coefficients {αi}ri=1:

arg min
X

‖X − Y‖2 = arg min
xij∈Rn,αi∈R

∥∥∥∥∥
r∑

i=1

αi

d
©
j=1

xij − Y

∥∥∥∥∥
2

F
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Dimension reduction for tensor fitting problem

Goal: use the geometry preserving modewise dimension reduction
to fit a smaller tensor.

Directly reusing the previous result would not work:

• Here, tensor Y is not low rank

• Tensor X is low rank, but not from a fixed low-rank subspace
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Solving the fitting problem

Idea (ALS: alternating least squares):
• Start with random basis for X : take random unit vectors
xij ∈ Rn for j = 1, . . . , d , i = 1, . . . , r

• Fix all but one mode j ∈ [d ], namely, x1j , . . . , x
r
j

• Optimize over j-th mode
• Repeat for the other modes until some error threshold

This turns out to be equivalent to solving nj separate problems of
the form:

Find

arg min
α1,...,αr∈R

‖Z‖ := arg min
α1,...,αr∈R

∥∥∥∥∥
r∑

i=1

αi

d
©

j=16=j ′
xij − Y ′

∥∥∥∥∥
2

That is, looking for the best fit in some fixed basis
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Subspace oblivious dimension reduction for tensors

What dimension reduction do we need?

• in a geometry preserving and modewise way

• in a subspace oblivious way (to have the same simple
operation for the multiple applications in various bases)
For example, in classical Johnson-Lindenstrauss lemma random

matrices are taken from general models



Overview Story about tensors Tensor dimension reduction Topic modeling Conclusion

Theorem: general model

Let Z = X − Y,

• for a fixed tensor Y
• and any low r -rank tensor X from a fixed CP subspace (basis)

• for m × n matrices Aj ’s taken from some general (subspace
oblivious!) model

we want ∣∣∣∣∣∣‖Z‖2 −
∥∥∥∥∥Z d

×
j=16=j

Aj

∥∥∥∥∥
2
∣∣∣∣∣∣ ≤ ε ‖Z‖2 . (1)

Theorem

If Aj ∈ Rm×n are (η/d)-optimal JL embeddings and L is spanned
by r rank-1 tensors with µd−1L < 1

2r , and m & ε−2rd3, then (1) is
satisfied with probability at least 1− η.
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Tensor norm

We consider ‖X‖ = sum of squares of the elements (generalization
of the Frobenius norm)

For a rank r tensor,

‖X‖2 =
r∑

i ,j=1

αiαj

〈
d
©
`=1

x`i ,
d
©
`=1

x`j

〉

=
r∑

i 6=j

αiαj

d∏
`=1

〈
x`i , x

`
j

〉
+ ‖α‖22

Using Cauchy-Swartz, one can estimate(
1− µ′X

)
‖α‖22 ≤ ‖X‖2 ≤

(
1 + µ′X

)
‖α‖22.
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Johnson-Lindenstrauss embeddings

We are going to consider matrices Aj such that

Definition (η-optimal family of JL embeddings)

A m × n matrix A is an η-optimal JL embedding if for any
ε ∈ (0, 1) and S ⊂ Rn of cardinality |S| ≤ ηeε2m/C ,∣∣‖Ax‖22 − ‖x‖22∣∣ ≤ ε‖x‖22 for any x ∈ S

with probability at least 1− η.

Gaussian, Fourier matrices, random projection matrices (to a
subspace uniformly selected from the Grassmanian) ...

Definition is inspired by Johnson-Lindenstrauss Lemma:
for any small η > 0, random projection from Rn → Rm ε-preserves
distances between ec(η)ε

2m points with probability 1− η.
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Modewise (in)coherence

µB := max
`∈[d ]

max
k,h∈[r ]
k 6=h

∣∣∣〈x`k , x`h〉∣∣∣ ,
• measures angles between all basis vectors (from the same

subspaces)

• orthogonal bases have coherence zero

• random (sub)gaussian tensors are incoherent enough with
exponentially high probability:

Lemma

If all components of all vectors x
(j)
k are normalized independent

mean zero K -subgaussian random variables, with probability at
least 1− 2r2d exp

(
−cµ2n

)
maximum modewise coherence

parameter of the tensor X is at most µ.
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Experiments: gaussian and coherent tensors compression
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cs = m/n – compression ratio
cn,X = ‖X ×1 A1 . . .×d Ad‖/‖X‖ – relative norm
Both data sets contain 10 tensors with d = 4, r = 10, n = 100
Coherent tensors constructed as 1 +

√
0.1 · g , g ∼ N(0, 1)
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Theorem: general model, optimality

Theorem (informal statement)

If Aj ∈ Rm×n are (η/d)-optimal JL embeddings and L is spanned
by r rank-1 tensors with µd−1L < 1

2r , and m & ε−2rd3, then (1) is
satisfied with probability at least 1− η.

Total number of entries nd → ε−2d rdd3d . Is this optimal?

The best dependence on ε (distortion) and r (rank) can be
estimated as:

• (Larsen, Nelson, 2016) ε−2 is optimal for vectors

• A set of all rank r matrices of the size n × n can be recovered
from O(rn) linear measurements.
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Theorem: KFJL operators, log-optimal in ε and r

Define (inspired by Jin, Kolda, Ward, 2019):

LKFJL (X ) := R (vect (X ×1 F1D1 · · · ×d FdDd)) ,

R is a matrix containing m random rows from Idnd×nd ,
Fi ∈ Rn×n is a unitary discrete Fourier transform matrix,
Di ∈ Rn×n is a diagonal matrix with n random ±1 entries.

Theorem

Let L be an r -dimensional subspace of d order tensor space
Rn×n...n. Assume that nd & η−1 and 2r2 < nd . Let
L1KFJL : Rn×n...n → Rm1 and L2KFJL : Rm1 → Rm2 , then for
m1 &logs c

d r2ε−2 and m2 &logs c
d r · ε−2, we have∣∣‖Z‖2 − ‖L2KFJL(L1KFJL(Z))‖2

∣∣ ≤ ε ‖Z‖2 ,
for Z = Y − X and all X ∈ L with probability at least 1− η.
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Full compression process

Figure: An example of 2-stage JL embedding applied to a 3-dimensional tensor
X ∈ R3×4×5. Next, the resulting tensor is vectorized (leading to y ∈ R24), and a
2nd-stage JL is then performed to obtain z = Ay where A ∈ R3×24, and z ∈ R3.
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Comparing various compression models

10
-4

10
-3

10
-2

10
-3

10
-2

10
-1

Gaussian

RFD

Gaussian+RFD

RFD+RFD

Vectorize+RFD

(a) error

10
-6

10
-5

10
-4

10
-3

10
-2

10
0

10
1

Gaussian

RFD

Gaussian+RFD

RFD+RFD

Vectorize+RFD

(b) time

Figure: Effect of JL embeddings on the relative reconstruction error of least
squares estimation of CPD coefficients. In the 2-stage cases, c2 = 0.05 has
been used, r = 40.
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Connected research-1: compressive sensing

Follow-up work, joint with D. Needell, M. Iwen, M. Perlmutter:

Give JL-type guarantees for all rank r tensors with high probability: get
(T)RIP restricted isometry property type results - used in compressive
sensing algorithms for recovery of a tensor from a few modewise samples
(such as Tensor Iterative Hard Thresholding)

• Based on supremum of chaos concentration inequality (cf [Krahmer,
Mendelson, Rauhut, 2012])

• Preliminary results for low HOSVD rank: partial vectorization seems
required, but modewise approach still crucial for memory saving

• Second stage deals with nearly orthogonal decomposition
(”generalized HOSVD”), our key lemma proves new complexity
estimate for such tensors
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Connected research-2: machine learning

Topic modeling on text data2

2L. Kassab, A. Kryschenko, H. Lyu, D. Molitor, D. Needell, E. Rebrova, On
Nonnegative Matrix and Tensor Decompositions for COVID-19 Twitter
Dynamics, submitted
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Twitter data related to COVID-19 (Feb-May 2020)

Tweet → vector (bag-of-words/TFIDF/word embeddings)

• d = 5000 words/terms (dictionary size)

• n = 90K tweets (1000 top retweeted tweets × 90 days)

All data . . .

. . . as a matrix:

. . . as a tensor with
temporal component:
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Dynamic topic modeling on matrix/tensor data
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Non-negative Matrix Factorization

X ∈ Rd×n
+ ≈W ·H, W ∈ Rd×r

+ ,H ∈ Rr×n
+

assuming that X is approximately low rank (r) 

𝑑 

𝑛 

𝑑 

𝑟 𝑛 

𝑟 × 
≅ 𝑋 𝑊 

𝐻 

Data Dictionary Coding 

≅ × 
Provides soft interpretable clustering of the data into r ”topics”



Overview Story about tensors Tensor dimension reduction Topic modeling Conclusion

Dynamic topic modeling with NMF
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Date

people, many people, people died: 1
like, looks like, would like: 2

health, public health, world health: 3
get, need, time: 4

wuhan, chinese, hospital: 5
lockdown, day, police: 6

new cases, deaths, total: 7
social distancing, practice social, social media: 8

us, help us, let us: 9
trump, trump administration, response: 10

stay home, stay safe, home stay: 11
china, world, communist: 12

cruise ship, japan, hong kong: 13
president, president trump, realdonaldtrump: 14

first, case, first case: 15
death toll, deaths, breaking: 16

tested positive, tests positive, test positive: 17
united states, country, cdc: 18

pandemic, global pandemic, world: 19
outbreak, spread, due: 20

T
op

ic

0.05 0.10 0.15 0.20 0.25

H matrix is split into blocks per day and averaged over the rows of the

blocks, showing prevalent topics for each day
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Non-negative low rank CP decomposition (NCPD)

Find non-negative factor matrices A = [a1, a2, . . . , ar ] ∈ Rn1×r
+ ,

B ∈ Rn2×r
+ , C ∈ Rn3×r

+ minimizing the reconstruction error

arg min
A,B,C

∥∥∥∥∥X −
r∑

k=1

ak©bk© ck

∥∥∥∥∥
2

F

• A is time representation of topics, i.e. the prevalence of each
topic through time (emerging, trending, fading away, etc.)

• B is term representation of the topics, i.e. words that
characterize each topic

• C is tweet representation of the topics, i.e. tweets associated
with each topic.
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Picking up short-term topics from tensor data

Topic 1: people (0.29) china (0.22) health (0.17) outbreak (0.17) like (0.15)

Topic 2: eating meat (0.55) stop eating (0.13) god (0.12) ji maharaj (0.10) sin (0.10)

Topic 3: hoax (0.55) trump (0.18) new hoax (0.10) called hoax (0.10) democrats (0.08)

Topic 4: social distancing (0.83) today (0.04) believes (0.04) practice social (0.04) currently (0.04)

Topic 5: china (0.51) wuhan (0.24) chinese (0.14) pakistan (0.06) pakstandswithchina (0.05)

Topic 6: lockdown (0.70) social distancing (0.12) people (0.07) government (0.06) trump (0.06)

Topic 7: lockdown (0.75) easter (0.08) social distancing (0.07) day (0.06) stayhome (0.05)

Topic 8: trump (0.43) cdc (0.18) president (0.18) realdonaldtrump (0.11) administration (0.10)

Topic 9: mike pence (0.46) charge (0.20) indiana (0.13) hiv (0.13) response (0.08)

Topic 10: li wenliang (0.34) chinese doctor (0.23) died (0.17) dr li (0.16) warn (0.10)

Topic 11: china (0.42) wuhan (0.18) cases (0.14) chinese (0.13) new (0.13)

Topic 12: death toll (0.37) sars (0.26) breaking (0.13) cases (0.13) new (0.11)

Topic 13: pandemic (0.34) trump (0.23) stay home (0.16) deaths (0.14) new (0.14)

Topic 14: pandemic (0.30) cases (0.22) new (0.18) us (0.16) positive (0.15)

Topic 15: cases (0.32) south korea (0.29) new cases (0.15) reports (0.12) iran (0.12)

Topic 16: washington state (0.41) first death (0.23) breaking (0.13) health officials (0.12) died (0.11)

Topic 17: stay home (0.56) please (0.14) stay safe (0.12) people (0.10) help (0.08)

Topic 18: hong kong (0.33) strike (0.25) border (0.22) mainland (0.11) closure (0.11)

Topic 19: cruise ship (0.31) passengers (0.21) japan (0.18) quarantined (0.17) board (0.14)

Topic 20: south korea (0.35) cases (0.29) total (0.12) new cases (0.12) korea reports (0.11)
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Further directions

Modewise tensor dimension reduction can help here:

• Dimension reduction for non-negative tensor fitting problem
would speed up finding NCPD decomposition significantly

Warning: practically, non-negative decompositions are
frequently done via multiplicative updates, not alternating
least squares with thresholding

• Modewise dimension reduction on the data itself can reduce
memory and enforce privacy on specific modes (such as,
user/tweet mode)
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Connected research-3: numerical linear algebra

Solving the fitting problem, we deal with many least square
problems

arg min
α1,...,αr∈R

∥∥∥∥∥
r∑

i=1

αi

d
©

j=16=j ′
xij − Y ′

∥∥∥∥∥
2

Essentially, we solve many inconsistent linear systems of the type
Ax = b. Let b̃ = Aα, where α is its least square solution. Two
natural cases are:

• Noise: Ax = b̃ and
∥∥∥b̃− b

∥∥∥ ≤ ε
• Corruptions: b is obtained by large changes on some of the

entries of b̃

See appendix!
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Current directions

1. Matrices:
• Delocalization of eigenvectors of graph Laplacians with the

applications to signal processing on graphs (uncertainty
principle, with P. Salanevich)

2. Optimization beyond linear systems:
• Theoretical guarantees for stochastic gradient methods (with

H.Lyu, W. Swartworth, D. Needell)
• Algorithms for more general noise/corruption models,

randomization of other projection-based algorithms (e.g.,
Douglas-Rachford method)

3. Tensors:
• Tensor restricted isometry property (with M.Iwen, W.

Swartsworth, M. Perlmutter)
• Tensor fitting for scientific data (with Y.H. Tang)

4. Machine learning beyond topic modeling:
• Non-negative low rank methods for regression problems,

guided clustering, etc (collaborators from UCLA)
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Literature

In almost all papers the authors have equal contribution and are listed alphabetically
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Thanks for your attention!
Questions?
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