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The best response dynamic is a process that can find an equilibrium strategy. It
starts from any joint strategy (s1, . . . , sn), where si is the strategy employed by player i. If
there is an si so that it is not the best response to all other sj’s, in the next step we consider
a joint strategy (s1, . . . , s

′
i, . . . , sn), where s′i is the best response (and the other sj did not

change). Repeat the process until we cannot find a player with the best response strategy
different from the one they use. If the process ends, this must be a Nash equilibrium (as no
player has an incentive to change their strategy).

This process might never end but keep going in an infinite loop, as in the mixed pennies
game example. Recall the game: Player 1 and Player 2 choose H or T . Player 1 gets payoff
1 if the joint strategy is (T, T ) or (H,H), and −1 if (T,H) or (H,T ) is played. Player 2 gets
a payoff negative of what Player 1 gets (one player pays a penny to the other). The best
response dynamic starting from the joint strategy (H,T ) looks like

• Player 1’s best response changes it to the joint strategy (T, T )

• Then, Player 2’s best response changes it to (T,H).

• Then, Player 1’s best response changes it to the joint strategy (H,H).

• Then, Player 2’s best response changes it to the joint strategy (H,T ), and we are back
to the joint strategy considered first, it can be improved by Player 2 by changing it...

It is no surprise the process does not end as there is no Nash equilibrium in the matching
pennies game. However, even when there is an equilibrium, we might end up in an infinite
loop starting with some joint strategies.

The potential function is a single function that expresses the incentive of all players
to change their strategy. Formally,

Definition 1. A function Φ from the set of all joint strategies to R is a potential function
if for any 2 joint strategies s = (s1, . . . , si, . . . , sn) and s′ = (s1, . . . , s

′
i, . . . , sn) such that

• they differ only at one position i (so, the player i can change strategy s to strategy s′)
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• the payoff of player i if the strategy s′ was played is higher than the payoff of i if s was
played (so, there is an incentive for the player i to do the change from s to s′),

Φ(s′) < Φ(s).

The key observation is that if a finite game has a potential function, then it
has a pure Nash equilibrium and the best response dynamic must converge it.

Why? Indeed, every best response decreases the potential function, so every step of the
best response dynamic gives a new strategy: all the joint strategies we’ve seen earlier had
higher values of Φ! Since there are finitely many pure strategies in the game, the process
must stop, at least after we look at all the strategies and find the one with the minimal value
of the potential (it can also terminate earlier, not at the global minimum of Φ).

• Unfortunately, potential functions can be hard to find even when they exist

• But if someone gives you a function Φ and you can show that its value must decay if
any player changes their strategy to increases their payoff, then you can (a) claim that
pure Nash equilibrium exists and (b) run the best response dynamic starting from any
joint strategy to find it.

• Mixed Nash equilibrium always exist for finite games (Nash theorem). The proof of
this fact is nontrivial and is roughly based on the generalization of the better response
dynamic for mixed strategies. One can prove that it always converges to an equilibrium
point (using Brower’s fixed point theorem).

Examples of potential functions: 1. Prisoner’s dillemma.

A potential function = the number of players who selected the “not confess” strategy. Why?
Here, the best response for every player in every situation is to confess (it is a dominating
strategy). So, swithching to the best response strategy is always changing from (NC) to (C).
Clearly, this change increases the number of players who decided to confess and decreases
the potential function.

2. NBA teams choosing cities. The executives of n NBA teams are trying to choose
where to locate their teams, and they have k different city choices (for example, LA, SF,
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NY, etc), denoted by 1, 2, . . . , k.1 The profit (determined by the number of local basketball
fans) of city j is Fj. If city j is selected by t teams, then they split the profits evenly, each
getting Fj/t. Is there an equilibium city choice for all the teams?

In this case, a potential function Φ of a certain strategy (assignment of the teams to
certain cities) can be defined as

−
k∑

j=1

nj∑
t=1

Fj

t
, where nj denote the number of teams that select city j.

For example, if two teams chose city 1, four teams chose city 2, city 3 has no teams and
city 4 has 1 team, this function is equal to

−F1 −
F1

2
− F2 −

F2

2
− F2

3
− F2

4
− F4.

In general, if a team gets better payoff from moving from city i to city j, then, its current
profit Fi/ni is less than its prospective profit Fj/(nj+1). At the same time, the new strategy
results in the value of the function Φ that is smaller by exactly Fj/(nj+1)−Fi/ni > 0 (check
this!). So, Φ is indeed a potential function and there is always an equilibrium choice of the
cities.

1While in essentially all other countries of the world it is pretty rare for sports teams to relocate, this is
pretty common in the US: https://en.wikipedia.org/wiki/List_of_relocated_National_Basketball_
Association_teams. Thanks to Micklos Racz for this example.
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