Randomized numerical linear algebra:
-
- A subspace constrained randomized Kaczmarz method for structure or external knowledge exploitation
- ... Jackie Lok, Elizaveta Rebrova
- ... submitted, arXiv:2309.04889
-
- On Subsampled Quantile Randomized Kaczmarz
- ... Jamie Haddock, Anna Ma, Elizaveta Rebrova
- ... Proc. Allerton Conf. on Communication, Control, and Computing, Monticello, IL (2023), arXiv:2308.07987
-
- Sharp Analysis of Sketch-and-Project Methods via a Connection to Randomized Singular Value Decomposition
- ... Michal Derezinski, Elizaveta Rebrova
- ... SIAM Journal on Mathematics of Data Science (SIMODS), to appear, or arXiv:2208.09585
-
- On Block Accelerations of Quantile Randomized Kaczmarz for Corrupted Systems of Linear Equations
- ... Lu Cheng, Benjamin Jarman, Deanna Needell, Elizaveta Rebrova
- ... Inverse Problems, arXiv:2206.12554
-
- Quantile-based Iterative Methods for Corrupted Systems of Linear Equations
- ... J. Haddock, D. Needell, E. Rebrova, W. Swartworth
- ... SIAM Journal on Matrix Analysis and Applications (SIMAX), Vol. 43, No. 2, pp. 605--637, arXiv:2009.08089 and journal versions
-
- On block Gaussian sketching for the Kaczmarz method
- ... E. Rebrova, D. Needell
- ... Numerical Algorithms 86 (1), 443-473, or arXiv:1905.08894
-
- Sketching for Motzkin's iterative method for linear systems
- ... E. Rebrova, D. Needell
- ... Proc. 50th Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, CA (2019), or arXiv:1912.00771
Tensor data compression and recovery:
-
- Fast and Low-Memory Compressive Sensing Algorithms for Low Tucker-Rank Tensor Approximation from Streamed Measurements
- ... C. Haselby, M. Iwen, D. Needell, E. Rebrova, W. Swartworth
- ... submitted, arXiv:2308.13709
-
- Modewise Operators, the Tensor Restricted Isometry Property, and Low-Rank Tensor Recovery
- ... C. Haselby, M. Iwen, D. Needell, M. Perlmutter, E. Rebrova
- ... Applied and Computational Harmonic Analysis 66, 161-192, journal or arXiv:2109.10454
-
- Lower Memory Oblivious (Tensor) Subspace Embeddings with Fewer Random Bits: Modewise Methods for Least Squares
- ... M. Iwen, D. Needell, E. Rebrova, A. Zare
- ...
SIAM Journal on Matrix Analysis and Applications (SIMAX), to appear, or arXiv:1912.08294
Non-asymptotic random matrix theory:
-
- Constructive regularization of the random matrix norm
- ... E. Rebrova
- ... Journal of Theoretical Probability, 33(3), pp 1768-1790 (2020), or arXiv:1809.03926
-
- Norms of random matrices: local and global problems
- ... E. Rebrova, R. Vershynin
- ... Advances in Mathematics, Vol. 324, pp 40–83 (2018), or arXiv:1608.06953
-
- Coverings of random ellipsoids, and invertibility of matrices with i.i.d. heavy-tailed entries
- ... E. Rebrova, K. Tikhomirov
- ... Israel J. Math., Vol. 227(2), pp 507-544 (2018), or arXiv:1508.06690
-
- Spectral Properties of Heavy-Tailed Random Matrices (PhD Thesis)
- ... E. Rebrova
- ... University of Michigan (2018), see full text and defense presentation
Data analysis via matrix and tensor factorizations:
-
- Sparseness-constrained Nonnegative Tensor Factorization for Detecting Topics at Different Time Scales
- ... L. Kassab, A. Kryschenko, H.Lyu, D. Molitor, D. Needell, E. Rebrova, J. Yuan
- ... submitted, arXiv:2010.01600
-
- On A Guided Nonnegative Matrix Factorization
- ... J. Vendrow, J. Haddock, E. Rebrova, D. Needell
... Proc. ICASSP IEEE International Conf. on Acoustics, Speech, and Signal Proc. (2021), or arXiv:2010.11365
-
- COVID-19 Literature Topic-Based Search via Hierarchical NMF
- ... R. Grotheer, K. Ha, L. Huang, Y. Huang, A. Kryshchenko, O. Kryshchenko, P. Li, X. Li, D. Needell, E. Rebrova
- ... Proc. NLP-COVID19-EMNLP (2020), or link
-
- Analysis of Legal Documents via Non-negative Matrix Factorization Methods
- ...R. Budahazy, L. Cheng, Y. Huang, A. Johnson, P. Li, J. Vendrow, Z. Wu, D. Molitor, E. Rebrova, D. Needell
- ... arXiv:2104.14028
Graph signal processing
-
- On Graph Uncertainty Principle and Eigenvector Delocalization
- ... E. Rebrova, P. Salanevich
- ... Proc. SAMPTA IEEE Sampling Theory and Applications Conference (2023), link, or arXiv:2306.15810
Scalable linear algebra for machine learning and scientific computing:
-
- Scalable and Memory-Efficient Kernel Ridge Regression
- ... G. Chavez, E. Rebrova, Y. Liu, P. Ghysels and X.S.Li
- ... Proc. 34th IPDSP IEEE International Parallel and Distributed Processing Symposium (2020), or link
-
- A study of clustering techniques and hierarchical matrix formats for kernel ridge regression
- ... E. Rebrova, G. Chavez, Y. Liu, P. Ghysels and X.S.Li
- ... ParLearning (2018), or arXiv:1803.10274
-
- A parallel hierarchical blocked adaptive cross approximation algorithm
- ... Y. Liu, W. Sid-Lakhdar, E. Rebrova, P. Ghysels and X.S.Li
- ... International Journal of High Performance Computing Applications, to appear, or link