Randomized NLA:
-
- Randomized Kaczmarz methods with beyond-Krylov convergence
- ... with M. Derezinski, D. Needell, J. Yang
- ... (2025) submitted, arXiv:2501.11673
-
- Fine-grained analysis and faster algorithms for iteratively solving linear systems
- ... with M. Derezinski, D. LeJeune, D. Needell
- ... (2024) submitted, arXiv:2405.05818
-
- A Subspace Constrained Randomized Kaczmarz method for structure or external knowledge exploitation
- ... with J. Lok
- ... (2023) Linear Algebra and its Applications (2024), or arXiv:2309.04889
-
- Sharp analysis of sketch-and-project methods via a connection to randomized singular value decomposition
- ... with M. Derezinski
- ... (2023) SIAM Journal on Mathematics of Data Science 6 (1), 127-153, or arXiv:2208.09585
-
- On block Gaussian sketching for the Kaczmarz method
- ... with D. Needell
- ... (2020) Numerical Algorithms 86 (1), 443-473, or arXiv:1905.08894
-
- Sketching for Motzkin's iterative method for linear systems
- ... with D. Needell
- ... (2019) Proc. 50th Asilomar Conference (2019), or arXiv:1912.00771
Robust linear solvers:
-
- Stochastic gradient descent for streaming linear and rectified linear systems with adversarial corruptions
- ... with H. Jeong, D. Needell
- ... (2024) SIAM Journal on Mathematics of Data Science (SIMODS), to appear, or arXiv:2403.01204
-
- On subsampled Quantile Randomized Kaczmarz
- ... with J. Haddock, A. Ma
- ... (2023) Proc. Allerton Conference (2023), or arXiv:2308.07987
-
- On block accelerations of Quantile Randomized Kaczmarz for corrupted systems of linear equations
- ... with L. Cheng, B. Jarman, D. Needell
- ... (2022) Inverse Problems 39 (2), 024002, or arXiv:2206.12554
-
- Quantile-based iterative methods for corrupted systems of linear equations
- ... with J. Haddock, D. Needell, W. Swartworth
- ... (2022) SIAM Journal on Matrix Analysis and Applications, 43 (2), 605-637, or arXiv:2009.08089
Tensor data compression and recovery:
-
- On trimming tensor-structured measurements and efficient low-rank tensor recovery
- ... with S. Suryanarayanan
- ... (2025) submitted, arXiv:2502.02843
-
- Fast and low-Memory compressive sensing algorithms for low Tucker-rank tensor approximation from streamed measurements
- ... with C. Haselby, M. Iwen, D. Needell, W. Swartworth
- ... (2023) submitted, arXiv:2308.13709
-
- Modewise operators, the tensor restricted isometry property, and low-rank tensor recovery
- ... with C. Haselby, M. Iwen, D. Needell, M. Perlmutter
- ... (2023) Applied and Computational Harmonic Analysis 66, 161-192, or arXiv:2109.10454
-
- Lower memory oblivious (tensor) subspace embeddings with fewer random bits: modewise methods for least squares
- ... with M. Iwen, D. Needell, A. Zare
- ...
(2021) SIAM Journal on Matrix Analysis and Applications 42 (1), 376-416 or arXiv:1912.08294
Data analysis via matrix and tensor factorizations:
-
- Learning nonnegative matrix factorizations from compressed data
- ... with A. Chaudhry
- ... (2024) submitted, arXiv:2409.04994
-
- Sparseness-constrained nonnegative tensor factorization for detecting topics at different time scales
- ... with L. Kassab, A. Kryschenko, H.Lyu, D. Molitor, D. Needell, J. Yuan
- ... (2023) Frontiers in Applied Mathematics and Statistics 10, 1287074, or arXiv:2010.01600
-
- On a guided Nonnegative Matrix Factorization
- ... with J. Vendrow, J. Haddock, D. Needell
... (2021) Proc. ICASSP IEEE Conference (2021), or arXiv:2010.11365
-
- COVID-19 literature topic-based search via hierarchical NMF
- ... with R. Grotheer, K. Ha, L. Huang, Y. Huang, A. Kryshchenko, O. Kryshchenko, P. Li, X. Li, D. Needell
- ... (2020) Proc. NLP-COVID19-EMNLP Workshop (2020), or link
-
- Analysis of Legal Documents via Non-negative Matrix Factorization Methods
- ... with R. Budahazy, L. Cheng, Y. Huang, A. Johnson, P. Li, J. Vendrow, Z. Wu, D. Molitor, D. Needell
- ... (2021) SCIURO undergraduate journal, or arXiv:2104.14028
Dynamic of SGD
-
- On regularization via early stopping for least squares regression
- ... with R. Sonthalia, J. Lok
- ... (2024) submitted, arXiv:2406.04425
-
- Discrete error dynamics of mini-batch gradient descent for least squares regression
- ... with J. Lok, R. Sonthalia
- ... (2025) Proc. ALT Conference, or arXiv:2406.03696
Non-asymptotic random matrix theory:
-
- Constructive regularization of the random matrix norm
- E. Rebrova
- ... (2020) Journal of Theoretical Probability, 33 (3), 1768-1790, or arXiv:1809.03926
-
- Norms of random matrices: local and global problems
- ... E. Rebrova, R. Vershynin
- ... (2018) Advances in Mathematics, 324, 40–83, or arXiv:1608.06953
-
- Coverings of random ellipsoids, and invertibility of matrices with i.i.d. heavy-tailed entries
- ... E. Rebrova, K. Tikhomirov
- ... (2018) Israel J. Math., 227 (2), 507-544, or arXiv:1508.06690
-
- Spectral Properties of Heavy-Tailed Random Matrices (PhD Thesis)
- ... E. Rebrova
- ... (2018) University of Michigan, see full text and defense presentation
Graph signal processing
-
- On graph uncertainty principle and eigenvector delocalization
- ... with P. Salanevich
- ... (2023) Proc. SAMPTA IEEE Conference, link, or arXiv:2306.15810
Scalable linear algebra for machine learning and scientific computing:
-
- Scalable and memory-efficient kernel ridge regression
- ... G. Chavez, E. Rebrova, Y. Liu, P. Ghysels, and X. S. Li
- ... (2020) Proc. 34th IPDSP IEEE Symposium, or link
-
- A study of clustering techniques and hierarchical matrix formats for kernel ridge regression
- ... E. Rebrova, G. Chavez, Y. Liu, P. Ghysels, and X. S. Li
- ... (2018) IEEE international parallel and distributed processing symposium workshop, or arXiv:1803.10274
-
- A parallel hierarchical blocked adaptive cross approximation algorithm
- ... Y. Liu, W. Sid-Lakhdar, E. Rebrova, P. Ghysels, and X. S. Li
- ... (2020) International Journal of High Perf. Comp. Appl., 34 (4), 394-408, or link