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My research is in high-dimensional probability, random matrix theory and mathematical
data science. In the modern world, we have access to a huge and only growing amount of data.
However, to convert this rich data to actionable knowledge, we are confronted with the challenge of
treating complex, frequently high-dimensional and large-scale data in a deliberate manner: a manner
that captures large and important underlying trends, but does not miss small ones, that is practically
efficient and scientifically justified. There are many ways in which a probabilistic view can help with this
task, some standard examples include modeling a real-world dataset by an artificial one coming from a
suitable distribution, or creating a randomized algorithm for an otherwise NP-hard problem that is fast
and almost always right. This motivates the main theme of my research: I study the structure of
large high-dimensional objects in the presence of randomness, and use this understanding to
develop randomized algorithms that efficiently process complex data. The tools I use come from
probability, functional analysis, convex geometry, optimization, numerical linear algebra, and machine
learning. The objects of my study range from matrices, graphs and tensors to any instances of large data,
and this places my work at the intersection of pure and applied mathematics. On the pure math side,
my research uncovers the beauty of a special order that naturally appears with high probability in large
random systems, such as, in the spectrum of large random matrices. On the applied side, my research
makes steps to close the gap between slow evolving theory and ad-hoc industry practices. I develop
data processing techniques that are simultaneously efficient, supported by theory, and well-interpretable.
As an illustration of these principles, I will henceforth focus on three concrete areas of my work: (1)
non-asymptotic random matrix theory in the heavy-tailed regime; (2) tensor factorization and
dimension reduction, and (3) randomized iterative methods for solving linear systems.

1. Matrices: Extremal singular values of heavy-tailed random matrices.

A classical way to understand the structure of a random matrix A is to look at its spectrum [Tao12,

Ver16]. For example, the largest and the smallest singular values (σk(A) :=
√
eigk(ATA)) determine the

basic geometric properties of A as a linear operator, namely, the norm of A and its inverse:

σmax(A) = sup
‖x‖2=1

‖Ax‖2 = ‖A‖, σmin(A) = inf
‖x‖2=1

‖Ax‖2 = 1/‖A−1‖.

Furthermore, the condition number of a matrix κ(A) := σmax(A)/σmin(A) estimates its stability proper-
ties and serves as a crucial parameter in the algorithms analysis (e.g., [Dem97]). Note that a well-bounded
condition number is a result of quantitatively good invertibility of the matrix (that is, ‖A−1‖ is not too
large) and well-bounded operator norm (that is, ‖A‖ is also not too large). For an n× n random matrix
A with independent standard Gaussian entries, both ‖A−1‖ and ‖A‖ are of order O(

√
n) with high prob-

ability [Ede88]. The same upper bounds hold if we relax the distribution assumptions to any subgaussian
distribution, that is, a distribution with tails that decay at least as fast as Gaussian distribution tails
[RV08]. In our work with K. Tikhomirov [RT18], we establish that the upper bound on ‖A−1‖ holds for
a significantly broader class of matrices. Our result contains the result of [RV08] as a special case, while
our probabilistic bound is sharp, unlike those obtained in related work [TV08, TV10]:

Theorem 1. Let A be an n × n matrix for n large enough with independent and identically distributed
(i.i.d.) centered elements with unit variance (so-called heavy-tailed matrix model). Then for any ε > 0

P
{
‖A−1‖ ≥ ε−1

√
n
}
≤ Lε+ un, with constants L > 1 and u ∈ (0, 1).

However, for the heavy-tailed matrix model, ‖A‖ might be much bigger (in particular, weak fourth
moment is necessary for the convergence in probability of ‖A‖/

√
n when n grows to infinity; see [Sil89]).
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Figure 1. An example of 2-stage JL embedding applied to a 3-dimensional tensor X ∈ R3×4×5. Next, the resulting

tensor is vectorized to y ∈ R24, and a 2nd-stage JL is then performed to obtain z = Ay where A ∈ R3×24, and z ∈ R3.

In the follow-up work with R.Vershynin [RV18], we show that the finite second moment condition is
necessary and sufficient for the existence of a local regularization of A that returns ‖A‖ to its “ideal
order” (see [RV18, Theorems 1.1, 1.3]) for the formal statements):

Theorem 2 (Informal statement). Let A be an n× n matrix with i.i.d. centered elements aij,

• if aij have finite variance, then for every small ε > 0 of our choice, with high probability there
exists an εn× εn submatrix A0 so that if we zero out all the elements inside A0,

‖A \A0‖ ≤ Cε

√
n, where Cε ∼ ln ε−1/

√
ε,

• otherwise we have to zero out almost all of A to bring the norm to the order
√
n.

This is an existence result, which does not explain a way to find the small submatrix to be zeroed
out. In my follow-up paper [Reb19], I present two constructive versions of the regularization procedure
that achieve the O(

√
n log logn) order of the norm for heavy-tailed matrices with i.i.d. symmetrically

distributed entries. A simple way is to remove an ε-fraction of the rows and columns with the largest
norms, while a more sophisticated algorithm achieves the same goal by removing only a small submatrix
as promised by Theorem 2. See more details in [Reb19, Theorem 1, Algorithm 1].

Outlook: It is very important to get closer to the complex distributions of real data and thus to get the
results beyond i.i.d. matrix models. Here, even small generalizations often require development of new
toolkits of math methods. Some particular examples of the theoretical problems I am interested in are (a)
to estimate an upper bound on σmin(A+M), where A is subgaussian and M is an arbitrary non-random
shift (b) to get a sharp probability estimate for the quantitative invertibility of rectangular matrices with
entries distributed with bounded densities. The latter is needed, in particular, to provide convergence
guarantees for the iterative randomized linear solvers (see Section 3 below) with non-Gaussian sketches.

Another very natural non-i.i.d. random matrix model is adjacency and Laplacian matrices associated
with random graphs. My ongoing work with P. Salanevich is related to signal processing on graphs.
One of the main results in classical signal processing is the uncertainty principle, stating that a signal
cannot be simultaneously localized in time and frequency. For signals defined on graphs, uncertainty
quantification is closely linked with the delocalization properties of eigenvectors – one of the most active
topics in the modern random matrix theory. It quantifies the similarity between the matrix of eigenvectors
V and a standard Gaussian matrix (for example, in terms of the largest element of V [BKY17] or the
number of small elements in each column of V [RV16, BL13]). We generalized the results obtained
in [TV17] to obtain a better uncertainty bound in terms of the sub-blocks of V and employed it to
get an uncertainty principle for d-regular graphs using several known delocalization results. The next
steps include establishing a new class of delocalization results addressing the relative sizes of eigenvectors
(sub-blocks of V ) and considering more general graph models.

2. Tensors: Modewise dimension reduction methods for tensors

Tensors (multi-way arrays), despite being direct higher-order generalizations of matrices, present many
interesting mathematical non-trivialities. For example, the notion of the spectrum is not well-defined in



RESEARCH STATEMENT 3

10
-4

10
-3

10
-2

10
-3

10
-2

10
-1

Gaussian

RFD

Gaussian+RFD

RFD+RFD

Vectorize+RFD

10
-6

10
-5

10
-4

10
-3

10
-2

10
0

10
1

Gaussian

RFD

Gaussian+RFD

RFD+RFD

Vectorize+RFD

Figure 2. Modewise dimension reduction methods for tensor fitting achieve very similar relative error for the same
total compression rate (left), but much more efficient (right)

the tensor case, and there are multiple ways to define the tensor rank. One of the most natural definitions
is the so-called CP-rank: for a tensor X , it is a minimal number of rank-one tensors (being outer products
of a collection of vectors) whose linear combination constitutes X , namely,

X =
r∑

j=1

x1j ⊗ . . .⊗ xdj for the d-way tensor of rank r in Cn1×···×nd .

There are no efficient algorithms for computing the CP decomposition precisely. In fact, this problem has
been proven to be NP-hard ([H̊as90]). Moreover, many real-life tensors are only approximately low-rank
due to noise, imperfect measurements, etc. Thus, it is a very important problem to approximate a given
tensor by a low rank tensor (so-called fitting problem) in some norm (e.g., ‖X‖2 =

∑
X 2
i1...id

).

In my work with M. Iwen, D. Needell and A. Zare [INRZ19], we propose and analyze modewise oblivious
dimension reduction methods that speed up and reduce memory when solving the fitting problem. A
common way to tackle the fitting problem (CPD-ALS, [KB09]) is to start with a randomly generated
tensor, and then optimize its components mode by mode, iteratively finding the best fitting tensor in a
fixed low-dimensional subspace (changing at each iteration). Oblivious dimension reduction techniques
relieve us from the need to adapt the procedure to each of these subspaces. Our modewise embedding
operator L acts without initial vectorization of a tensor and results in nd/(md + dmn) (m� n) memory
reduction:

(1) L(X ) := A0 (vectorize (X ×1 A1 · · · ×d Ad)) , where ×j is a j-mode product.

Fig. 1 illustrates our compression process. We give the analysis for the cases (a) when matrices Ak are
taken from a general class of η-optimal JL embedding distributions, which includes random matrices with
i.i.d. subgaussian entries, as well as sparse JL constructions and others, and (b) in the case when Ak

have special Kronecker Fourier JL form (introduced in the recent paper [JKW19]). In the general case
(a) we prove

Theorem 3. Let X ∈ Cn1×···×nd and L be an r-dimensional subspace of Cn1×···×nd spanned by rank-one
tensors, which component vectors are sufficiently incoherent.

Then, for any m′ ≤ Cr · ε−2 · ln(47/ε r
√
η) a linear operator L : Cn1×···×nd → Cm′

as per (1) satisfies
the following with probability at least 1− η

(2)
∣∣∣‖L (X − Y)‖22 − ‖X − Y‖

2
∣∣∣ ≤ ε ‖X − Y‖2 for all Y ∈ L.

In the latter case (b) we achieve the same target dimension up to log-factors, but do not need inco-
herence and rank-one basis tensor assumptions. Also, the intermediate dimension (that we achieve after
the modewise products before the vectorization) becomes especially efficient, Olog,d(r2ε−2).
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Figure 3. Tensor methods (NCPD, right) pick up short-term topics and attribute them to the correct dates, matrix
methods detect global trends only (NMF, left); COVID-19 Twitter data: 1000 most retweeted tweets/day (Feb-May 2020)

Outlook: The data in the real applications is often multi-modal: for example, a 2-d picture usually has
the third dimension representing color, and a movie has yet another temporal component. The tensor
structure is inherent for such data, however, the majority of existing tensor methods (e.g. [LHW17,
WTSA15, SGTU18]) essentially disregard it, applying matrix (or vector) techniques to matricizations
(or vectorizations) of the tensors. In addition to the loss of structure, this approach results in huge
memory and computational requirements even for tensors with compact structures. The development of
the modewise methods for tensors is one of the key directions of my research. My ongoing projects include
(a) proving a tensor version of the restricted isometry property [CT05] to guarantee a possibility of tensor
recovery from a few modewise measurements and (b) developing modewise versions of the polynomial
kernel sketching methods ([AKK+20, ANW14, PP13]).

I also work on creating interpretable machine learning techniques using tensor methods. Low-rank
tensor (and matrix) decompositions identify intrinsic components (“topics”) in the data. Imposing non-
negativity on the factors makes the topics interpretable. In [KKL+20], my colleagues and I used non-
negative CP tensor decomposition (NCPD [CC70, H+70]) for dynamic topic modeling on Twitter text
data related to the COVID-19 pandemic. We were able to discover a variety of related topics (including
political events, personal beliefs about COVID-19 and calls to action), both persistent and short-term,
and successfully attribute them to the days they were trending. Relative to its matrix counterparts,
NCPD captures the topic structure more precisely and are considerably better at detecting smaller
topics, see also Fig. 3. The next goal is to speed up NCP fitting using modewise dimension reduction
techniques. Multiple other directions related to the topic-aware learning from data include (a) adding
flexibility to these originally low parametric methods (unlike famous neural networks, vanilla NCPD has
just one parameter – number of topics – and benefits a lot from a proper regularization) (b) extension
of the related supervised methods [LYC09] to incorporate side information about the topics or feature
importance, (c) topic-aware data search.

3. Linear systems: Randomized iterative linear solvers for error correction

One of the most ubiquitous problems arising across the sciences is that of solving large-scale systems
of linear equations, Ax = b. Scalable and efficient iterative methods are used when it is too slow or
infeasible to solve the system directly by inversion. Iterative methods frequently employ randomization:
for example, in the famous stochastic gradient descent method (SGD, [Bot10]) gradients are approximated
based on random subsamples of the data (which speeds up the iterations significantly). In the randomized
Kaczmarz method1(RK, [SV09]), random choice of the next step helps to avoid a malicious or unlucky
ordering of equations that might lead to slow convergence. Moreover, it allows one to use high-dimensional

1RK iteratively projects each current approximation xk onto the solution space of the next randomly chosen equation of
the full column rank overdetermined linear system until convergence.
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Figure 4. QuantileRK(q) works on up to 50% corruption rate, given proper q, 50000 × 100 Gaussian system (left);
Performance of quantile-based methods on 699× 10 Wisconsin Breast Cancer dataset, β = 0.143 (right)

probability methods to prove that RK converges exponentially in expectation, namely,

(3) E‖xk − x∗‖22 ≤
(
1−R−2

)k ‖x0 − x∗‖22, where R = ‖A‖F /σmin(A).

where x∗ is the solution of the overdetermined system Ax = b. There are plenty of extensions of RK,
speeding it up, aiming to alleviate the effect of row coherence that makes iterations of RK much less
efficient, and extending it to the inconsistent systems (e.g., [NW13, Nee10, NT14], including my recent
analysis of block Gaussian Kaczmarz method [RN20], joint with D. Needell). A standard way to treat the
inconsistent (or, noisy) case Ax∗ = b+ e is to show that the iterates approach the least squares solution
x̂ = argminx ‖Ax− b‖22 and quantify the distance to the true solution x∗ in terms of the noise size ‖e‖.
However, this is not satisfactory for the case of large and potentially adversarial corruptions in the vector
b: the methods themselves should be modified to avoid corrupted equations.

In my work with J.Haddock, D.Needell and W.Swartsworth [HNRS20], we address this problem by
proposing versions of RK and SGD methods that use order statistics of the residual (that is, distances
from xk to the solution hyperplanes of the individual equations) to judge whether the next attempted
iteration is safe. QuantileRK is a “lazy” algorithm which makes the attempted step only if it is safe,
and QuantileSGD defines a safe step size based on the quantiles of the residual (see [HNRS20] for the
algorithm details). We prove the following.

Theorem 4. Let the matrix A have subgaussian isotropic rows, with the entries that have centered and
bounded density functions. Then with probability 1− ce−cqm, the iterates produced by the QuantileRK(q)
and QuantileSGD(q) converge with the standard convergence rate (3) with R = C‖A‖F /σmin(A) (same
order as the Kaczmarz rate for uncorrupted systems) as long as the fraction of corrupted entries β is
small (we put no restrictions on their magnitude), q ≤ 1/2− β, and m� n log n.

Theoretical analysis in [RN20, HNRS20] is based on both known and novel probabilistic concentration
of measure results. Experimentally, we see that our methods work on up to 50% of incoherent corruptions,
and up to 20% of adversarial corruptions (that consistently create an “alternative” solution of the system).
Preliminary results on real-world datasets are also available, see Fig. 4 and [HNRS20].

Outlook: Numerous applications face a need to solve large-scale systems involving corrupted mea-
surements, ranging from medical imaging and sensor networks to error correction and data science. In
my future work, I plan to develop methods for the more general corruption models, in which there is a
mix of non-sparse noise and sparse, but large, corruptions on the vector b or the case when the noise (or
corruptions) additionally affects the matrix A. One application of the latter is the low rank tensor fitting
algorithm (discussed in Section 2) with corrupted measurements.

Finally, solving linear systems is only a starting point: I plan to develop and analyze randomized
iterative methods that avoid significantly large unknown corruptions for a general class of optimization
problems (such as the systems with non-linearities and inequalities, finding extrema of functions and
beyond), which has applications in training machine learning models in the presence of adversarial training
data.
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