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Self organizing maps (SOM)

Goal: approximate data points in RP by a low-dimensional manifold
Unlike PCA, the manifold does not have to be a subspace

Method: constrained K-means clustering, with prototypes (centers
of clusters) are encouraged to lie on low (1 or 2) dimensional
manifold in feature space.

This manifold is also called constrained topological map, since the
original high-dimensional observations can be mapped down onto
the two-dimensional coordinate system.
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SOM general construction

e Start with two-dimensional rectangular grid of K prototypes
m; € RP (it's possible to use other grids, e.g. hexagonal)
Each prototype is parametrized by integer coordinate pair
yj = (yjl,yf) S {1,...,q1} X {1,...7q2}, K= qi - go.

e Initialize m;. Good idea is to assume them along the first
principal component (maximize mutual distance) - " buttons”
on the principal component plane in a regular pattern.

e Algorithm tries to bend the plane so that "buttons”
approximate the data points as well as possible.
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SOM algorithm update step
Algorithm processes observations X; one at a time.
e Find the closest prototype mj;, such that
m; = argmin; [[x; — m;||2

(L distance in RP)
e For all grid neighbors m, ~ m; update

my = my + a(x,- — mk)
Definition
Prototype my is a neighbor of m;, if
Iy = yill2 < r

(Ly distance in {1,...,q1} x {1,...,q2} C R?) Also, r is a chosen
threshold, m; is always a neighbor to itself and will be updated.

ICA
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SOM parameters

Parameters of the algorithm:
e «is a learning rate (typically decreases from 1.0 to 0.0 over a
few 1000's iterations, one per iteration)
e ris a distance threshold (also decreases linearly from R to 1
over same iterations)
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K-means and SOM

o If we take r small enough to contain exactly one point, then
the spatial connection between prototypes is lost, and we get
standard K-means.

e In general, SOM is constrained version of K-means.

e To check whether constraint is reasonable, we can compare
the reconstruction error

> IXi = mil?
i

for K-means and for SOM.
SOM-error is always bigger K-mean-error, but for the
reasonable constraint they are compatible.



Self organizing maps Multidimensional scaling ICA

SOM variations

1. Variation of the algorithm with more sophisticated update
step:
myc = my + ah([|y; — yill) - (xi — mi),

where h(.) is a neighborhood function, which gives more
weight to the prototypes my with the indices y, closer to y;
than to those further away.

2. The original SOM algorithm is online (observations processed
one at a time), but we can do a "batch” variation:

I > wie X
J - EWk ’

where Xj are the observation points, coming from (mapped
from) the neighbors my of m;. Weight function w might be
rectangular (1 on neighbors of my and zero otherwise) or
decrease smoothly with ||y; — x|l
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SOM examples
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Multidimensional scaling (MDS)

Goal: approximate data points in RP by a low-dimensional manifold
Same goal as in SOM and in PCA

Method: start with observations Xi,..., Xy € RP, define a
dissimilarity measure

dj = X — X].

Usually it is L, distance, but not necessarily.
Optimization task: MDS seeks values z, ..., zy € R¥ (k < p) to
minimize stress function

Su(zi,....zn) = Z(dii' — ||lzi = z7]|)* = min
i
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MDS stress functions

Many variations of stress functions:
1. Least squares scaling:

Sm(z1,..zn) =Y (dir = ||zi — z]])’

ii!

Idea: find a lower-dimensional representation of the data that
preserves the pairwise distances as well as possible. (Note that
approximation is in terms of distances, not squares of the
distances - this makes computations harder).

2. Variation of least squares (Summons mapping):

d"/ —_— P /! 2
Ssm(zlg-..,ZN) = Z ( . ||§’ 4i H)
i it

Gives more importance on preserving smaller pairwise
distances.
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MDS stress functions

1. Least squares scaling
2. Summons mapping

3. Classical scaling:
Sc(z1,- - zn) =Y (si — (i — 2,20 — 2))°
iil

Here s; are similarities between the data. Frequently,

siir = (Xi — X,Xi’ - )_<>,
then this is equivalent to principal components method.

4. Shephard-Kruskal nonmetrc scaling
Snm(zi, - - -, zn) uses only ranks
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MDS optimization

e Usually, Sy is minimized by gradient descent

e In case of classical scaling (Sc) we can write an explicit
solution in terms of eigenvectors
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MDS and SOM

Advantages of SOM:

e manifold approximation is more flexible than subspace
approximation

e provides a low-dimensional coordinate system for data
Advantages of MDS:
e various dissimilarity/similarity metrics can be used

e preserves distances (in case of SOM close points are kept
close, but the points farther apart can also become close)

ICA
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Independent component analysis (ICA)

What if our data comes as multiple indirect measurements from
some underlying source, but the source itself cannot be directly
measured?

Some examples:

e Sound recording from the noisy room, we want to separate
music from people or two people speaking

e Educational and phycological test are supposed to use answers
to questions to measure the underlying intelligence and other
mental abilities of subjects

e EEG brain scans measure the neuronal activity in various parts
of the brain indirectly via electromagnetic signals recorded at
sensors located at various positions on the head

Goal: find these latent sources (components) producing data.
(Note that it is different from PCA/SOM/MSD goals - we do not
search for low-dim data approximation)
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ICA problem formal statement

The model is
X=A-5,
where
e X € RP - one p-dimensional observation (think about a vector

with dependent coordinates, taken from some underlying
probability space)

e 5 € RP - a latent source p-vector, whose components are
independently distributed random variables (on the same
underlying probability space)

e A - p X p mixing matrix

Goals of ICA: given N observations (realizations xi,...,xy € RP),
e estimate A

e estimate the source distributions f; (densities of s;, j € [p]).
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ICA in terms of matrices

Equivalently, the model can be rewritten as

p
X = E Ai5i7
i=1

where A; are the columns of the mixing matrix.

Also,
X=A-S,
where
e X is p x N observation matrix (every observation is a column)
e Sis p x N source matrix with independent rows

e Ais p X p mixing matrix
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ICA vs PCA: independent vs uncorrelated

From SVD (singular value decomposition) we can find such
decomposiotion:

XT=vuzv’ = ﬁu-isz = ST. AT
ﬁ
X =AS

Every observation x; is a linear combination of latent variables s;,
which are uncorrelated (as S was orthogonal), mean 0 (assume X
is centered), variance 1 (rescaling). Does this define mixing matrix
and latent variables well?

No. Problem: for any orthogonal p x p matrix R
X =AS = ARTRS = A*S*,

and S* has the same properties, as S (mean 0, variance 1, no
correlation).

This is why we require independence, not just zero-correlation.
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Ambiguities of ICA

Usually, both A and S are assumed unknown. Hence, it is
impossible to determine them uniquely. In particular, we cannot
determine

1. the variances of independent components s;.
Rescaling A — aA, s — s/a does not change the result.
Common assumption: I[*Zsj2 =1 (and Es; = 0, this follows if
we centralize x)

2. the order of the independent components s;
For any permutation matrix P we have

x=A-Id-x=AP 1Ps,

3. if distribution of s is rotationally invariant, we have a problem.
Then matrix A is not identifiable, since for any orthonormal R

x =ARTRs = (ART)s.

ICA
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Measure of "non-gaussianity”

Rotationally invariant = Gaussian. Also, recall, that for a gaussian
random variables zero correlation is equivalent to independence.
Hence, the assumption needed for ICA: underlying sources are
NOT gaussian

Very informal explanation: sum of independent components
(independent identically scaled random variables) tends to normal
distribution by Central Limit Theorem, so any single s; is " farther'
from gaussian than any linear combination of s;'s (weights should
satisfy condition on their size, this is very informal)

Method:
e measure "distance to gaussian distribution” in terms of
entropy (next slide)
o WX — max, in sence of this measure (2p local maxima in
p-dim space, corresponding to s, —s1, 52, —S2, . . .)
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ICA: entropy and negentropy

Definition

Entropy of a random variable Y with density f(y) is

H(Y) == [ 7y log f(y)dy
Entropy is maximized by Gaussian density f(y).
Definition (Hyvarinen, Oja, 2000)
Negentropy measure is
J(Y)) = H(Y;) — H(Z)),
where Z; is a Gaussian random variable with same variance as Y.

It measures the departure from Gaussianity .*. ICA seeks to
maximize negentropy.
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ICA: mutual information

The notion of negentropy came from similarity to the mutual
information, that measures the departure from independence.

Mutual Information is

I(Y) = Y H(Y) = H(Y).

J=1

where
® Y is a random vector with components Y]
e I(Y) is also called Kullback-Leibler divergence between
density fy(.) and its independence version [T} fy,(.) (which is
K-L closest of all independence densities to fy(.))
e Hence /(Y) is a measure of dependence between the
components of a random vector Y.
Another approach to ICA: directly maximize mutual information
(max likelihood principle)

ICA
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ICA preprocessing

e Centering EX =0
o Whitening (unlike PCA!) EXXT = Id

EXAMPLES

ICA
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Literature

These slides are made as a complement to the lecture material
slides:

e CME 250 Stanford course by Alexander loannidis and
Karianne Bergen:
https://sites.google.com/site/cme250winter2016/lecture-
materials

Additional sources used (by topic, inside topic in order of

helpfulness for me).
ICA:

1. A. Hyvarinen, E. Oja ICA: Algorithms and Applications (link
in the course website near Lecture 3)

2. T. Hastie ICA by Product Density Estimation slides
https://web.stanford.edu/ hastie/Papers/icatalk.pdf

3. T. Hastie et al The elements of statistical learning pp 557 -
570
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